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Abstract—Rapidly diversifying technology and declining com-
putational costs are popularizing technologically-flexible simu-
lation and verification techniques, even at some cost in perfor-
mance. This paper investigates a data-driven, sampling-based
approach for computing substrate Green’s functions, which is
more technology-flexible than specialized layered media methods,
at the cost of speed and accuracy. Our method is based on
assuming that grid-sampled Green’s functions can be well-
approximated by Toeplitz-plus-Hankel (TPH) matrices, and uses
a least-squares procedure to recover a TPH matrix from a small
number of samples. We show that sample location is crucial, and
that good sample locations are ones that minimize an associated
graph-diameter-based condition number estimate. The method’s
expected effectiveness is demonstrated on noise-polluted samples
of layered media Green’s functions. More surprisingly, we show
that the method is effective even when applied to a substrate
geometry that is only mildy planar.

Index Terms—Toeplitz matrices, Hankel matrices, sampling
methods, Green’s function methods, interconnnections, induc-
tance, multilayer media

I. INTRODUCTION

FOR decades, developers of circuit- and physical-level
simulation and verification have focused on increasing

capacity and reducing turn-around time. But the accelerating
pace of technology diversification, along with the rapidly
expanding availability of computing power, is shifting that
focus. Flexible generic approaches are gaining popularity, even
if slower or less accurate. More mature examples of this shift
include: using scripting languages and automatic differenti-
ation for circuit simulator device models, rather than hand-
coded C or C++ [1]; and modeling subsystem input-output
buffers using automatically-calibrated generic IBIS models,
rather than using expert-designed circuit models [2].

Interconnect technology has always been diverse. Wires
can be routed on-chip, on-die, on-board, on-connector, in-air,
and in-bundles (e.g. Fig. 1). So it is not surprising that the
dominant analysis tools, 3-D electromagnetic field solvers,
are already technologically-flexible methods. The situation
is quite different for on-chip or on-board interconnect. The
relevant geometries are far more complicated, and analyzing
substrate effects is critical, as they impact delay and cross-talk,
and interfere with achieving timing closure [3]–[6]. General
3-D field solvers are prohibitively time-consuming when used
to analyze interconnect over substrates, because they must
explicitly discretize both the substrate and the wires.

Instead, specialized approaches have been developed that
represent the substrate implicitly using a substrate Green’s

function [7], [8]. If the substrate is a stack of planar layers,
as in Fig. 3, then there are a wide variety of techniques
for explicitly computing the substrate Green’s function in a
(block) Toeplitz-plus-Hankel matrix structure [8]–[14]. In turn,
this special matrix structure allows the corresponding system
of equations to be efficiently solved using the FFT and an
iterative method [15]–[19].

The relentless diversification of technology is also impacting
substrates, which can now be layered (Fig. 1), finite (Fig. 2,
top), tub-like (Fig. 2, middle), finned (Fig. 2, bottom), or one
of many other alternatives [4]–[6], [20], [21]. Such general
substrates are often only approximately planar. In this paper,
we describe a data-driven, sampling-based alternative for com-
puting substrate Green’s functions, which can be summarized
in three steps:

1) Assume that the substrate Green’s function has a (block)
Toeplitz-plus-Hankel structure;

2) Collect a small number of Green’s function samples,
via measurements, simulations, or any other means, at
carefully selected locations;

3) Use least-squares to recover a (block) Toeplitz-plus-
Hankel representation to the sampled data.

Compared to specialized methods for layered-media Green’s
functions, the approach is less efficient and less accurate,
because analytical expressions for the Toeplitz-plus-Hankel
representation of Green’s function are explicitly available [8],
[22]. But it is also more generic, because it can be expected
to work even for approximately planar substrates that do not
admit analytical expressions.

Note that the matrix recovery part of the approach can be
highly efficient. Since the Toeplitz-plus-Hankel structure has
very few degrees-of-freedom, very few samples are needed to
uniquely capture the underlying matrix. But a subtler issue,
and the central focus for this paper, is determining where the
samples should be taken. The entire approach rests on uniquely
recovering a matrix given its samples, but poorly chosen sam-
ple locations could render this impractical or impossible, if the
influence of an underlying degree-of-freedom is insufficiently
probed.

In the next section, we provide background on Toeplitz-plus-
Hankel matrices, their relationship with translation invariance
and planar reflections in Green’s functions, and note the data-
compression and computational advantages of the represen-
tation. We describe the least-squares recovery algorithm in
Section III and in Sections IV and V, we describe the graph
theory behind selecting the sample locations. We show, given



2

Figure 1: Complex wiring in layered media

Figure 2: General substrate geometries

well-chosen sample locations, that recovering a Toeplitz-plus-
Hankel matrix from sampled data is not only possible, but
also reasonably well-conditioned. To illustrate, noise-polluted
samples are used to perform the recoveries in Section VI, and
the well-conditioning prevents noise from being significantly
amplified in the recovered matrix output. Finally, in Section
VII, the sampling approach is applied to the electric field
Green’s function for a general substrate geometry. Results indi-
cate that the Toeplitz-plus-Hankel assumption is surprisingly
accurate, even though the domain is only mildly planar. As
expected, the assumption degrades when the problem is made
fully non-planar.

II. TPH MATRICES

An n× n matrix, M , is said to be in Toeplitz-plus-Hankel
(TPH) form if it can be written as the sum of a Toeplitz
(constant diagonal) and a Hankel (constant anti-diagonal)

matrix, as in

M = T +H (1)

=
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︸ ︷︷ ︸

Hankel

,

in which the scalars t1, . . . , t2n−1 and h1, . . . , h2n−1 are
respectively known as its Toeplitz and Hankel generators.

The definition can also be generalized to block matrices.
Suppose that every t1, . . . , t2n−1 and every h1, . . . , h2n−1 in
(1) are instead defined to be n × n TPH matrices. Then M
would be of size n2×n2, exhibiting the TPH pattern over its
matrix blocks, and also within each individual matrix block.
In this paper, we refer to such a block matrix as a 2-level TPH
matrix, and the original TPH matrix as a 1-level TPH matrix
where necessary. Obviously, the definition may be recursively
extended to d levels: every matrix block of a d-level matrix is
itself a d− 1-level TPH matrix.

Trivially, every Toeplitz matrix and every Hankel matrix is
also a TPH matrix. Likewise, every Toeplitz-block-Toeplitz,
Toeplitz-block-Hankel, and Toeplitz-block-Hankel matrix is
also a 2-level TPH matrix. The set of d-level TPH matrices
is closed under addition: the sum of two d-level TPH matrix
yields a third d-level TPH matrix.

A. Application to electromagnetic Green’s functions

Fundamental to the analysis of interconnects is the compu-
tation of an electromagnetic field quantity (e.g. voltages, flux)
given values for a source quantity (e.g. currents, charge) [18],
[23]–[25]. For example, in the electric field integral equation
(EFIE) over three-dimensions, the x̂-directed electric field, Ex,
measured at the observation point, r = (x, y, z), due to ẑ-
direct electric currents, Jz , is given by the integral equation

Ex(r) =

ˆ
Gxz(r, r

′)Jz(r
′) dr′. (2)

Similar integral equations can also be reformulated for com-
binations of various potential fields, charges, and currents [7],
[26], [27].

In all cases, the kernel of integration in (2) is known
as the Green’s function. Serving an analogous role to the
impulse response in signals and systems, the Green’s func-
tion captures the pairwise interaction between point-sources
and point-measurements. For example, the value Gxz(r1, r2)
corresponds to the x̂-directed electric field at r = r1, due to
a ẑ-directed current dipole placed at r′ = r2.

Green’s functions that implicitly capture the presence of
reflective planar boundaries often yield Toeplitz-plus-Hankel
matrices when tabulated over uniform grids. To illustrate,
consider the EFIE Green’s function from before, which is
translation invariant with the form

Gxz(r, r
′) = Ĝxz(x− x′, y − y′, z − z′).
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Figure 3: Infinite-extent, planar, piecewise-constant structure
that admits closed-form Green’s functions.

Suppose a ground plane, modeled as a perfect electric con-
ductor (PEC), were added along the plane z = 0. Then by the
method of images (see e.g. [27, Ch. 3]), every point-source at
r′ = (x′, y′, z′) would be complemented with a mirror point-
source at r′′ = (x′, y′,−z′), and their combined response is
the new Green’s function

GPEC
xz (r, r′) =Ĝxz(x− x′, y − y′, z − z′)

− Ĝxz(x− x′, y − y′, z + z′).

For every fixed x, x′, y, y′, tabulating the function GPEC
xz over

a uniform grid in ẑ yields a TPH matrix. Repeating this over
different values of x, x′, y, y′ and stacking the result in turn
yields a 3-level TPH matrix that is strictly Toeplitz over its
second and third levels.

More formally, for the region above or in-between a mul-
tilayer planar structure of infinite extent, as in Fig. 3, each
p̂q̂-dyad of the associated Green’s function will have the form

GML
pq (r, r′) = Tpq(ρ, z − z′) +Hpq(ρ, z + z′), (3)

where ρ =
√

(x− x′)2 + (y − y′)2 is the cylindrical radius
[8], [22]. The multilayer planar case is so pervasive that much
of the literature on layered- media Green’s functions is focused
on efficient semianalytical evaluation of Tpq and Hpq in (3).
Then, TPH matrices are easily obtained from (3) by tabulating
GML

pq over a uniform grid in ẑ and fixed ρ.

B. Computational advantages

The TPH description offers significant data compression
when a Green’s function is tabulated over a uniform grid.
For example, sampling a generic Green’s function, G(r, r′),
over a uniform grid of n × n × n yields a total of n6

tabulated values. But if the Green’s function is known to be
a 3-level TPH matrix, then one can show that there are at
most (4n − 2)3 underlying degrees-of-freedom. In the case
of layered media (e.g. Fig. 3), these degrees-of-freedom can
be directly evaluated and tabulated, using well-established
semianalytical methods [8]–[14]. The reduction in formation
and storage costs are cubic with respect to n: at n = 10, the
TPH structure reduces costs by 18 times, but at n = 100, this
figure grows to more than 15,000 times.

Another aspect of TPH matrices is that they are inexpensive
to apply to vectors, and hence, inexpensive to solve using

iterative methods [28]. In the electromagnetics community, it
is well-known that the FFT can be used to compute the product
of a n×n Toeplitz matrix and a length-n vector in order n log n
operations [15], [16], [29]. Less well known, but important in
this case, is that the FFT, turned “sideways”, can also be used
to apply a n× n Hankel matrix to a length-n vector in order
n log n operations. The combination means that if a tabulated
Green’s function matrix is given as the sum of (block) Toeplitz
and Hankel matrices, then it can be applied in order n log n
operations using the FFT [11], [18], [19], [30]–[32].

C. Extraction from data

A n × n TPH matrix, M , has only 4n − 2 degrees of
freedom, so it is not surprising that all of M can be recovered
by sampling a small subset of its entries. Equivalently, it is
also possible to infer the T and H matrices from samples of
M , though the decomposition is not unique. As discussed in
the introduction, a more important issue is determining what
samples of M would ensure that that inferring all of M is
well-conditioned.

Samples of M should be taken along entire columns.
To see this, consider tabulating a simple Green’s function,
G(z, z′), via numerical simulations (or hypothetical physical
measurements). Every column of M corresponds to the field
response measured everywhere on the uniform grid due to
a single point-source. Hence, an entire column of M is
obtained simultaneously with just single run of numerical
simulation program (or a single hypothetical experimental
set-up). Moving the point-source along all grid points and
repeating the procedure fills the entire matrix. Alternatively,
using just a few carefully chosen columns, corresponding to
the system response to a few carefully chosen point-source
locations, all remaining entries of the table may be recovered
using the procedure in Section III.

It is worth noting that most electromagnetic Green’s func-
tions are singular at r = r′. In these cases, it is always possible
to define a simple analytic function, GF (r − r′), that shares
the same type of singularity, so that their difference

GS(r, r
′) = G(r, r′)−GF (r− r′)

is smooth and easily interpolated from tabulated values [7],
[8], [26]. The TPH estimation procedure can then be applied
to the smooth remainder GS .

III. LEAST-SQUARES TPH MATRIX RECOVERY

Consider the n×n Toeplitz-plus-Hankel matrix M , defined

M(i, j) = t(i− j − n) + h(i+ j − 1) ∀{i, j} ∈ J, (4)

where the set J = {{1, 1}, {2, 1}, . . . , {n, n}} enumerates all
matrix element indices in M . Given a subset of the elements
of M , whose set of associated indices is denoted by S ⊆ J ,
M can be recovered by solving the minimization problem,

min
T,H∈Rn×n

‖T +H −M‖S ,

subject to T ∈ Toeplitz, H ∈ Hankel, (5)
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where ‖ · ‖S denotes the matrix Frobenius norm, restricted to
elements with indices in S, as in

‖X‖S :=

√ ∑
{i,j}∈S

|X(i, j)|2.

Similar least-squares formulations have appeared in the con-
text of signal processing [33]

In this section, the matrix-norm minimization problem (5) is
converted into a (diagonally-scaled) least-squares problem. In
the process, we show that in the presence of noise, the efficacy
of matrix recovery is determined entirely by the choice of
samples. Once well-chosen samples are collected, obtaining
the right TPH matrix recovery is relatively routine.

A. Conversion to least-squares problem

The Toeplitz and Hankel matrix constraints in (4) can be
summarized by a pair of {0, 1}-matrices ET and EH . These
matrices relate the n×n matrices T and H to the (2n−1)-long
Toeplitz and Hankel vectors t and h, as in

ET t = vec(T ), EHh = vec(H). (6)

Note that ET and EH each have one nonzero per row.
For the case S = J , or equivalently given values for all

elements of M , we would have a linear system with n2 rows
and 4n− 2 columns,[

ET EH

] [t
h

]
= vec(M),

⇐⇒ Ex = b, (7)

where b ∈ Rn2

is the vectorized matrix M , x ∈ R4n−2 is the
vertical concatenation of the t and h generating vectors, and
E is the mapping between the generators and the TPH matrix.
As can be seen from the n = 6 example in Fig. 4, every entry
of M corresponds to a row of E with exactly two nonzero
values of one, and each column of M corresponds to a block
of n rows in E.

The Toeplitz-plus-Hankel decomposition of M is not
unique, so E must be singular (see Appendix A). We denote
N ∈ Rn×c as the c-dimensional right-nullspace matrix of E,
such that

EN = 0. (8)

In addition, since the goal was to reconstruct the full M from
a subset of its entries, S is usually a strict subset of J . To
represent the sampling, we introduce the restriction operator
onto the support of S,

RS(i, i) =

{
1 J(i) ∈ S,
0 otherwise.

(9)

Multiplication with RS maps a vector to zero everywhere
except within the support of S.

Combining (7)-(9), the matrix-optimization problem in (5)
can be reduced to a standard least-squares problem,

xest = argmin
x∈Rn

‖RS(Ex− b)‖22 + ‖NTx‖22, (10)

Figure 4: The E matrix, which maps the Toeplitz-plus-Hankel
degrees of freedom to elements of the resulting TPH matrix,
for a 6×6 example. Note that each dot corresponds to a value
of one in the matrix E.

where xest approximates the original generator vector x. An
associated approximation to M , denoted Mest, can be obtained

Mest = mat(Exest). (11)

The minimization problem in (10) is an unconstrained least-
squares, with a closed-form solution given by the normal
equations, [

ETRSE +NNT
]
xest = ETRSb. (12)

B. Error sensitivity & time-complexity

In order to analyze the normal equation error sensitivity, we
define κS as the condition number restricted to the support of
S and orthogonalized to the original null-space. Specifically,

κS(E) =
λn(E

TRSE)

λc+1(ETRSE)
, (13)

in which c , nullity(E) and the eigenvalues are ordered,
smallest to largest, as λ1 ≤ · · · ≤ λ2n−1.

Letting w ∈ Rm denote the errors in a given subset of M ,
and then replacing b with b + w in (12), the reconstruction
error M − Mest can be related to w using standard matrix
perturbation theory [34],

‖M −Mest‖F ≤
√
κS(E)‖w‖2, (14)

where ‖ · ‖F denotes the Frobenius norm. The expression (13)
reveals that error sensitivity is driven entirely by the choice of
sample locations, S, and not by the underlying values of the
matrix.

If we have sampled a good set of entries from M , then we
would expect the reconstructed Mest to be close to M , even
if our samples have errors. Equivalently, a sample set, S, is
good if xest, satisfying (12), is reasonably insensitive to errors
in b. In other words, a well-chosen S yields a small condition
number, κS .
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On the contrary, poorly chosen samples could cause errors in
the data to be magnified. In the worst-case, a sample set could
cause the matrix in (12) to become singular. This corresponds
to a sample set that “misses” certain degrees-of-freedom in the
underlying TPH matrix. In this case, κS is unbounded, and the
maximum reconstruction error in (14) can be arbitrarily large.

C. Scaled normal equations

The least-squares normal equation (12) is in some sense
“artificially” ill-conditioned. The diagonals of ETE have
values that range from 1 to n, and this immediately yields
a condition number that grows O(n). It is easy to eliminate
this variation by diagonal scaling, sometimes referred to as a
Jacobi preconditioning.

Considering defining the diagonal matrix D as

D ≡ diag(ETRSE), (15)

where the “diag” operator preserves the diagonal entries of its
argument, while setting the off-diagonal entries to zero. Using
D to define Jacobi-preconditioned versions of E and N ,

Ê ≡ ED− 1
2 N̂ ≡ D− 1

2N, (16)

the scaled normal equation becomes[
ÊTRSÊ + N̂N̂T

]
x̂est = ÊTRSb. (17)

Note that diagonal scaling does not interfere with reconstruct-
ing M , as easily seen

Mest = mat(Êx̂est). (18)

After rescaling, the matrix ÊT Ê has only 1 along its
diagonals. Therefore we would expect the condition number
κS(Ê) to be lower than κS(E).

IV. OPTIMAL COLUMN-BASED SAMPLE SELECTION

The results in Section III emphasize the fact that TPH matrix
recovery works only when the sample set, S, produces a well-
conditioned recovery problem. We must balance this objective
with taking as few samples as possible. Moreover, driven by
the nature of the application, the samples should be collected
in a specific pattern, namely as entire columns of the data
matrix.

Combined, the problem of picking the best-conditioned
columns of the data matrix to sample is a combinatorial
eigenvalue optimization

S? = argmin
S⊆K

|S|κS , subject to κS finite, (19)

such that S be chosen from K = {K1,K2, . . . ,Kn}, where
each Kj = {{1, j}, {2, j}, . . . , {n, j}} denotes an entire
column of matrix elements from the data matrix. Note that the
minimum number of columns is 4, since there are 2×(2n−1)
total degrees of freedom in the TPH matrix (see Section III).

A. Exhaustive search
The optimization in (19) is unstructured and nonconvex,

due to its discrete nature and its dependence on the condition
number. Regardless, naive exhaustive search can already solve
the optimization in polynomial time, if the maximum number
of columns is fixed to a constant, k. This is because the size
of the solution space only grows

(
n
k

)
.

But since k is at least 4, the exhaustive search is very ex-
pensive in practice. Efficiency may be significantly enhanced
by “presolving” the first two columns. More specifically, one
can show that every feasible solution to (19) must necessarily
satisfy the following statement.

Theorem 1 (Essential columns). Every feasible selection must
necessarily contain the first and last columns, as in

K1,Kn ∈ S.
Proof: See Section V.

Incorporating this result allows the optimal k-column selec-
tion to be provably obtained with a complexity of O(nk−2).

B. Four-Column Selection
For a small number of columns, k, it is possible to analyze

the structure of the underlying problem. Following this, Sec-
tion V describes a framework for the optimization based on
elements of graph theory. The feasibility of all k = 4 column
selection is characterized, and a heuristic measure (the graph
diameter) is used as a proxy for conditioning. This leads to a
heuristic solution to the k = 4 column-selection problem.

Theorem 2 (Minimum diameter 4-column set). Let n be even,
then the selection S = {Ka,Kb,Kc,Kd}, where

a = 1, b = 1 +

⌈√
n

2

⌉
, (20)

c = b+
n

2
, d = n, (21)

will yield a 4-column selection that minimizes the TPH graph
diameter in the asymptotic limit n→∞.

Proof: A proof based on the graph formulation in Section
V is the subject of an upcoming paper.

Although it is impossible to prove that these choices are
optimal, we observe in our numerical experiments that the
solutions in Theorem 2 closely match the performance of the
optimal solutions found by exhaustive searching.

C. Five-Column Selection
Even the optimal four-column selection becomes inevitably

ill-conditioned with growing problem size, n. The condition
number can be improved by sampling additional columns, in
a sense proving a level of regularization. This paper proposes
a simple linear-complexity heuristic for five-column selection:

1) Chose the first four columns based on Theorem 2;
2) Exhaustively search for the fifth column.

There is no strong reason why the optimal five-column selec-
tion ought to share columns with a good four-column solution.
Nevertheless, in Section VI, we find this procedure to produce
good column selections, with an acceptably small optimality
gap from the optimal selection.
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V. GRAPH FORMULATION

The conditioning of the least-squares TPH matrix recovery
procedure can be related to properties of a bipartite graph and
its associated graph Laplacian. This way, the column-selection
optimization in (19) can be posed as a graph sparsification
problem on the TPH graph, where the objective is to delete
as many edges as possible while preserving the connectivity
properties of the original graph.

The general graph sparsification problem is well-studied,
admitting many highly effective deterministic [35]–[37] and
randomized [38]–[40] algorithms. However, the constraint to
only select edges corresponding to entire columns of the data
matrix makes our version of the problem quite different; the
theory that relies on selecting individual matrix entries does
not directly apply. At the same time, the constraint reduces
the dimensionality of the problem, making it easier to analyze
in closed-form.

A. Reduction to graph sparsification

Since E in (7) is a binary matrix with two nonzeros per
row, it can be interpreted as an edgewise incidence matrix
for an undirected graph; one that has 4n − 2 vertices and
n2 edges1. But we can be more specific, E is an edgewise
incidence matrix for a bipartite graph (the edges in a bipartite
graph connect one member from each of two disjoint sets of
vertices). This follows from the fact that each entry of M is
the sum of one value from the Toeplitz vector t and one value
from the Hankel vector h. Correspondingly, each row of E
has one nonzero in the first 2n− 1 columns (for the Toeplitz
value) and one nonzero last 2n − 1 columns (for the Hankel
value).

Formally, E is the incidence matrix for the TPH graph
defined below. Note that the graph is dense, because there are
O(n2) edges for O(n) vertices, making visualization difficult
even for small cases. A highly stylized representation of the
graph is shown in Fig. 5.

Definition 3 (The TPH graph). The size-n Toeplitz-plus-
Hankel (TPH) graph G := {{T,H}, E} is a bipartite graph,
whose edges are defined by the algebraic relation

{ti−j+n, hi+j−1} ∈ E 1 ≤ i, j ≤ n, (22)

over the vertices T = {t1, t2, . . . , t2n−1} and H =
{h1, h2, . . . , h2n−1}.

It is reasonable to speak interchangeably of edges in the
TPH graph, G, and indices of the TPH matrix, M , since every
edge of G maps uniquely to a single index of M via (22).

Definition 4. Given a set of indices, S, for a TPH matrix,
denote GS = {{T,H}, S} as the corresponding edge-induced
TPH subgraph, GS ⊆ G, i.e. the graph that share the same
vertices as the TPH graph, G, but has edges restricted to e ∈ S.

The TPH subgraph GS and the S-restricted least-squares
recovery problem in Section III are co-spectral. To make

1This paper deviates from the usual graph theory convention of denoting
m as the number of edges and n as the number of vertices.

Figure 5: The TPH graph for the n = 6 case is depicted in
highly stylized form. The 22 vertices (or nodes) in the graph
are the elongated ovals labeled t1, ..., t11 and h1, ..., h11. The
edges in the graph are black dots, intended to denote “vias”
between a T vertex and an H vertex. The figure can also be
interpreted as a hypergraph, in which case the elongated ovals
are the hyperedges and the black dot vias are the vertices or
nodes.

this statement precise, we provide a brief definition of graph
eigenvalues. Given any graph, G, with vertices V and edges
E, the Laplacian matrix, L, is given by

L(u, v) =


−1 {u, v} ∈ E,
deg(v) u = v,

0 otherwise,

∀u, v ∈ V,

and the normalized Laplacian matrix, L, is defined

L(u, v) =


−1√

deg(u) deg(v)
{u, v} ∈ E,

1 u = v,

0 otherwise,

∀u, v ∈ V,

in which the degree of vertex v, denoted deg(v), gives a
count of the number of edges in G that originate from v. The
eigenvalues of G are defined as the eigenvalues of its (regular)
Laplacian matrix, λk(G) ≡ λk(L), while the normalized
eigenvalues of G are those for the normalized Laplacian
matrix, λ̂k(G) ≡ λk(L̂). In this paper, we take the convention
λ1 ≤ · · · ≤ λ4n−2, and λ̂1 ≤ · · · ≤ λ̂4n−2.

Lemma 5. The eigenvalues and the normalized eigenvalues
of the graph coincide with those of the least-squares systems
in (12) and (17):

λk(E
TRSE) = λk(GS), λk(Ê

TRSÊ) = λ̂k(GS).

Proof: Taking E to be the least-squares system in (7), the
normal matrix ETE can be written as the sum of the degree
matrix D and adjacency matrix A for G,

ETE = D +A.



7

Since the graph G is bipartite, the matrices D+A and D−A ≡
L are unitarily similar (see [41] for a proof). The spectral
equivalence then follows immediately.

The condition number κS(·), defined in (13), can be ex-
pressed via the eigenvalues of GS using Lemma 5, as in

κS(E) =
λn(GS)
λc+1(GS)

, κS(Ê) =
λ̂n(GS)
λ̂c+1(GS)

, (23)

where c , nullity(E) as in (13).

B. Graph connectivity as a metric for feasibility

Returning to the optimization problem (19), we have desig-
nated a candidate sample set, S, to be feasible if its condition
number, κS(E), is finite. By our error analysis in (14), only
a sample set S with a finite κS can successfully recover all
elements of a TPH matrix in the presence of noise.

Under the graph formulation, a candidate sample set is
feasible if and only if its subgraph is connected.

Lemma 6. A sample set, S, is feasible in (19) if and only if
the subgraph GS has exactly 2 connected components.

Proof: The nullity (i.e. number of connected components)
of a graph coincides with the nullity of its Laplacian matrix
(see e.g. [42] for a proof). By Lemma 8, the original TPH
graph has nullity(G) = 2. Suppose that nullity(GS) > 2.
Then λc+1(GS) = 0, which causes κS(E)→∞ in (23).

An immediate application of Lemma 6 is to identify the
“essential” elements of M that must be included in order for
a sample set S to be feasible. Theorem 1 is one such statement.

Proof of Theorem 1: Columns 1 and n contain edges to
the pendant vertices, {t1, t2n−1, h1, h2n−1}, each connected
to the main graph by a single edge. If these columns are not
sampled, then at least one pendant vertex becomes discon-
nected. By Lemma 6, the resulting sample set is infeasible.

C. The graph diameter as a heuristic for conditioning

A sample set with a small value of κS can also be selected
under the graph framework. According to the relation in
(23), minimizing κS is equivalent to maximizing the smallest
nonzero normalized eigenvalue, λ̂c+1; the largest normalized
eigenvalue is fixed to λ̂4n−2 = 2 due to G being bipartite [42,
Lemma 1.8].

Regardless, λ̂c+1 is difficult to optimize using combinato-
rial arguments, due to its variational, global nature. Instead,
Theorem 2 arrives at a selection by using the graph diameter
as a proxy for λ̂c+1. Informally, the diameter is known as
the longest “shortest-path” in a graph. It is computed to be
the largest number of vertices that must be traversed to travel
directly between two vertices on a graph, i.e. without detours,
loops or backtracks. For a graph with more than one connected
component, we define its diameter as the maximum diameter
of its components.

Claim 7. A good column-based sample set S, i.e. one that
yields a low condition number κS(Ê) in (23), must also
produce a subgraph GS with a low diameter.

Proof: Small diameters is a necessary condition for
graphs to have large values of λ̂c+1 [42], [43, Ch.4].

However, the converse statement is not necessarily true:
a subgraph with a low diameter is not obliged to yield a
well-conditioned recovery problem. Hence, the graph diameter
can only serve as a heuristic to guide the optimization, but
cannot be used to prove optimality. Regardless, our result in
Theorem 2 was obtained by minimizing the graph diameter,
and in practice, we find the heuristic to be highly effective.
Our latter numerical results confirm this claim.

VI. PERFORMANCE VALIDATION

Our results throughout this paper are ultimately rooted in
the heuristic of approximating the condition number with the
diameter of a certain subgraph. It cannot prove optimality,
nor assess the performance of a “typical” feasible solution. To
study these properties, we must perform an exhaustive search
in the solution space.

A. Comparison to average case

To get a sense of how the four-column choice suggested in
Theorem 2 compares against a randomized choice (made while
respecting Theorem 1), a cumulative probability distribution
is plotted in Fig. 6. The horizontal axis shows the inverse of
the the condition number, 1/κS(Ê), on a logarithmic scale.
Each line plots the percentage of four-column choices that
are bettered conditioned than that particular value along the
horizontal axis.

The results show that the “average” 4-column choice per-
forms very poorly. Even when the first the columns are
correctly selected via Theorem 1, 70% of the choices for the
remaining two columns are infeasible, for the problem size of
n = 30. The portion of infeasible choices increases to 80% for
the larger problem size of n = 70. The distribution itself also
becomes long-tailed as n increases: for n = 30, all feasible
column choices performs within a factor of 2 of each other,
whereas by n = 70 the range has expanded to almost 10.

Results show that the four-column choice suggested by
Theorem 2 performs very well in practice. In all three problem
sizes studied, the optimality gap is sufficiently small to be
negligible. The result suggests that the graph diameter is
indeed an effective heuristic for λ̂c+1, for the class of graphs
considered in this paper.

B. Optimality gap over a range of problem sizes

Regardless, the choices suggested by Theorem 2 are not
optimal for small values of n, so an optimality gap is expected
to exist. Figure 7a plots the optimality gap for the four-column
selection suggested by Theorem 2, against the global optimum
found by exhaustive search. Surprisingly the optimality gap is
negligibly small over all problem sizes considered, and does
not appear to grow with problem size. This experimental result
suggests that Theorem 2 may in fact coincide with the globally
optimal four-column solution.

Figure 6b examines the optimality gap of the four-plus-one
column selection strategy. Results show a massive improve-
ment in conditioning, even when compared to the globally
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Figure 6: Cumulative probability distribution of the inverse
condition number 1/κS . Each line plots the percentage of four-
column selections that are better conditioned than the value
along the horizontal axis.

optimal four-column choice. The optimality gap for the four-
plus-one strategy is larger in relative terms, and also grows
larger with problem size. Regardless, the reduction in the con-
dition number makes it pragmatic choice for real applications.

C. Computational Example

Finally, we illustrate the importance of conditioning in a
realistic recovery problem, as well as the effectiveness of the
four- and five-column choices in a practical environment. The
data for this example is sourced from a realistic TPH matrix
in [44], which corresponds to a particular multilayered media
Green’s function evaluated over a uniform grid.

The data matrix is tainted with 10% additive Gaussian
white noise (by Frobenius norm), to result in a signal-to-noise
ratio (SNR) of 20 dB. The noise spectrum, in practice, will
be determined by the source of the data. Data collected via
physical measurements will have errors due to instrument tol-
erances, while data generated from numerical simulations will
have errors due to numerical residuals and modeling errors.
Our goal in this subsection is to illustrate the importance of
conditioning, without discriminating against a particular data
source. For this reason, a flat noise spectrum was used.

We begin by performing the four-column recovery and
comparing it against an “arbitrary” choice of four columns.
For the example size of n = 300, the former is chosen
to be the columns {1, 10, 160, 300}, while the latter is set
to {1, 75, 225, 300}. This latter, “arbitrary” choice was made
to simulate a sampling scheme selected via engineering in-
stinct. Since the underlying Green’s function is known to
be smooth, it is always tempting to sample it using the
Gauss-Legendre nodes or Chebyshev nodes, which are optimal
for their respective classes of smooth functions. The fourth
order Chebyshev nodes over the interval x ∈ [−1, 1] are
x = ±

√
2±
√
2/2 ≈ {±0.38,±0.92}. Stretching this over

300 columns yields approximately the choice described.
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Figure 7: Optimality gap between the approximate minimum
diameter solution and the actual solution. (a) four-column set;
(b) five-column set.

The recovered Toeplitz vectors for the four-column scheme
are shown in Fig. 8; similar levels of noise are also observed
in the Hankel vectors. The columns suggested by Theorem 2
yields a reduction of SNR from 20 dB to 5.7 dB, for a noise
factor of around 14 dB. The spectrum of the noise is gathered
towards high frequencies, such that if the underlying function
is known to be smooth, then the SNR can be further improved
either via a regularizing assumption, or by post-processing.
By comparison, the arbitrary choice has a noise factor around
20.8 dB, and the noise appears to be broad-spectrum. It is
difficult to discern the signal from noise at this point, even if
assumptions are made about the smoothness of the underlying
function.

Next, we perform a five-column recovery. The four columns
selected before are kept as-is, and an exhaustive search
is performed for the fifth column that would minimize
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Figure 8: The amplification of measurement noise in the
Toeplitz vector during least-square recovery for n = 300
problem. (a) Four columns sampled via the results of this
paper; (b) Four column recovered via an arbitrary column
choice of {1, n/4, 3n/4, n}.

the overall condition number. This results in the choice
{1, 10, 160, 245, 300}. The “arbitrary” choice is also aug-
mented by the most obvious choice: the column in the middle,
to yield {1, 75, 150, 225, 300}.

Results from the four-plus-one recovery scheme are shown
in Fig. 9a. Results validate our finding that the condition
number dramatically improves with the addition of one more
vector. The noise factor improves to 4.9 dB, which is good
enough to use directly, without further regularization or post
processing.

In comparison, the arbitrary five-column scheme shows
no significant improvement over the arbitrary four-column
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Figure 9: The amplification of measurement noise in the
Toeplitz vector during least-square recovery for n = 300 prob-
lem. (a) Four columns sampled via the results of this paper,
plus one by exhaustive search; (b) Five column recovered via
an arbitrary column choice of {1, n/4, n/2, 3n/4, n}.

scheme. While the noise factor has technically improved, it
remains just as difficult as before to discern the signal from
the noise.

VII. RECOVERY OF A GENERAL GREEN’S FUNCTION

Toeplitz-plus-Hankel matrix recovery presents a surprisingly
effective data-driven approach for estimating the Green’s func-
tions of substrate geometries that satisfy a certain ansatz.
Consider the problem of characterizing the electric field re-
sponse within the box labeled “Source Region” in Fig. 10,
due to a Hertzian dipole of any polarity placed anywhere
within this same box. Deriving an analytical expression would
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Figure 10: Ellipsoidal dielectric reflector (with diameter 10
mm and depth 2 mm), embedded within a rectangular silicon
substrate: (a) physical dimensions and source layout; (b)
electromagnetic properties. The origin (x, y, z) = (0, 0, 0) is
set to the center of the top surface of the substrate.
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Figure 11: Substrate response to an x̂-oriented dipole placed
at r′ = (1.67, 0.67, 0.42) mm : (a) current density magnitude
|J(r)|; (b) electric field magnitude |E(r)|.
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Figure 12: Sampling pattern over source region at
{−2,−10/9, 10/9, 2} mm.

certainly be difficult. The substrate has dimensions on the same
order-of-magnitude as the source region, so edge effects can
be significant. Furthermore, the half-ellipsoidal aperture, with
diameter of 10 mm and εr = 10, will experience significant
cavity resonance at 2.45 GHz. Finally, the dielectric transitions
smoothly into the substrate, but for an analytical expression,
this would have to be treated as an abrupt boundary. Figure 11
illustrates a typical response of the substrate; all three effects
described above are shown to be significant.

The analytical difficulties motivate a data-driven approach.
Discretizing the source region into a uniform grid of 10 ×
10 × 10 points, a 1000 × 1000 matrix may be defined (for
each pair of source and field polarity), in which each column
contains the electric field at all 1000 grid points due to the
influence of a single dipole placed at a corresponding grid
point. In turn, the matrix can be populated by performing
scattering experiments: exciting the substrate with a dipole and
measuring the electric field responses. Data may be collected
using real instruments, or via a numerical simulation program.
Regardless, naively populating the entire matrix would require
1000 distinct scattering experiments to be performed.

Instead, we make the ansatz that the underlying Green’s
function admits a Toeplitz-plus-Hankel structure in each of
its three dimensions. More specifically, rearranging the data
matrix into a 6-dimensional tensor, we assume the following

G(i, j, k, i′, j′, k′) =

8∑
l=1

G(l)(i± i′, j ± j′, k ± k′), (24)

in which (i′, j′, k′) and (i, j, k) are respectively the subscripts
to the source and target points on the 10× 10× 10 grid.

The ansatz is backed by physical intuition. The half-
ellipsoidal cavity is wide and very thin; when it is wider
than the source region, its impact is similar to infinite-horizon
layered media, which is known to yield the TPH structure
along the z direction (see Section II). Moreover, the boundaries
of the substrate are rectangular; by separation of variables,
one can show that eigenfunctions of a rectangular homogenous
medium are TPH along the x and y directions. Taken together,
these two observations strongly suggest (and experimental data
confirms) that the sampled Green’s functions will be well-
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Figure 13: Electric field response in x̂ at z = 1.978 mm due
to an x̂-oriented dipole placed at r′ = (1.67, 0.67, 0.42) mm,
with half-ellipsoidal cavity diameter set to: (a) 10 mm; (b) 1
mm. Exact (lines) vs TPH predictions (markers).

approximated by a TPH matrix, but more rigorous analysis
is still needed. And more importantly, it remains an open
problem to characterize the class of substrates whose Green’s
function can be accurately approximated by TPH.

Assuming the structure in (24), we proceed to recover
the Green’s function using the methods in this paper. First,
to collect the best-conditioned samples, source locations are
chosen at 43 = 64 grid nodes, shown in Fig. 12, corresponding
to the choice of {1, 3, 8, 10} suggested by Theorem 2 placed
along each dimension. For each of the 64 source locations, the
scattering problem is solved over all 103 points on the grid,
using the MARIE package [45], based on the volume integral
formulation in [46]. Repeating this process yields a total of
64× 103 samples.

Table I: TPH recovery of the example Green’s function matrix,
compared to exhaustively computing every element.

Exhaustive TPH Recovery % Reduction
Data Collection

Num. scatt. prob. 1,000 64 93.6 %
Num. samples 106 6.4× 103 93.6 %

Comp. time1 57,500 s 3,830 s 93.3 %
Storage

Degrees of freedom2 106 54,872 94.5%

1 Around 10s to solve each scattering problem, and around 40-50s to
evaluate the electric fields using MARIE. Includes the computation of the
TPH recovery problem.
2 54872 = (10× 4− 2)3.

To perform the three-dimensional TPH recovery, the least-
squares problem (5) in Section III may be modified to enforce
the structure in (24), and solved using any generic convex
optimization parser, such as YALMIP [47]. Alternatively, it
is also possible to perform the recovery one dimension at a
time. Doing so immediately draws an equivalence between the
conditioning of the three-dimensional problem here and the
one-dimensional problem studied in Section III. The details
of this latter procedure are left to a separate paper.

The results of the matrix recovery show a remarkable match
with elements of the actual matrix: for each of the nine
polarization pairs, TPH matrix recovery was able to produce
predictions with 0.1-0.3 % relative error in Frobenius norm,
despite sampling 6.4% of all matrix entries. Some select
predictions of TPH recovery are shown in Fig. 13a. As shown
in Table I, the ability to describe the entire matrix using 6.4%
of its elements results in a large reduction in computation time
and storage requirement.

We emphasize that the effectiveness of the procedure rests
solely on the TPH ansatz, described in (24). This is an entirely
different setting to most previous work on inference and sparse
sensing, in which the underlying matrix is assumed to be low-
rank [48]. Indeed, this particular problem is not low-rank.
Once the exact 1000 × 1000 matrices had been computed,
their numerical ranks were verified to range between 200 and
600 (for a relative tolerance of 10−6).

But as expected, the method falls apart when the TPH ansatz
is rendered invalid. For example, if the half-ellipsoidal cavity
is reduced in size to 1 mm diameter and 0.2 mm depth, then the
cavity is no longer wide-and-flat, and the scattered field in the
source region should not be TPH. Indeed, repeating the above
procedure for this modified example results in prediction errors
as large as 10% - 80% in Frobenius norm. Some example
predictions are shown in Fig. 13b.

VIII. CONCLUSIONS

In this paper we showed that a Toeplitz-plus-Hankel (TPH)
matrix can be recovered by sampling four or five of its
columns, and we showed how to use column sampling in
a flexible data-driven approach for characterizing substrate
Green’s functions, in a form perfectly suited for FFT-based
fast interconnect analysis.

The selection of the sampled columns is carefully examined,
using a combination of linear algebra and graph techniques,
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because a good selection leads to a well-conditioned recovery
problem. And if the recovery problem is well-conditioned, then
it is possible to accurately recover TPH matrices from noisy
measurements or low-accuracy simulation data, as demon-
strated in our first example for the recovery of a noise-polluted
TPH matrix. Our results also suggests that sampling an addi-
tional column (beyond the minimium four) can significantly
improve the conditioning of the recovery.

Sampling the columns following the prescription in our
Theorem 2 yields a recovery problem that is well-conditioned
enough to extract good TPH approximations from mildly non-
TPH matrices. In our second example, this was demonstrated
by extracting a TPH approximation of the Green’s function
for a far-from-planar dielectric reflector. The result suggests a
practical direction for future work: to characterize the class of
substrates that admit TPH approximations of their associated
Green’s function.
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APPENDIX

A. Null-space of the TPH decomposition

Proposition 8 (Null-space basis). The right null-space of E,
defined in (7), has dimension 2, and is spanned by spanned
by the bases[

1odd 1even

−1even −1odd

]
for n odd,[

1odd 1even

−1odd −1even

]
for n even,

where 1odd and 1even define the indicator vectors for odd-
and even-indexed coefficients, as in

1T
odd =

2n−1︷ ︸︸ ︷[
1 0 1 0 1 · · ·

]
,

1T
even =

[
0 1 0 1 0 · · ·

]
.

Proof: See [33], [49] for a proof using linear algebra.

REFERENCES

[1] L. Lemaitre, G. Coram, C. McAndrew, and K. Kundert, “Extensions to
Verilog-A to support compact device modeling,” in Proceedings of the
2003 International Workshop on Behavioral Modeling and Simulation,
2003., pp. 134–138, IEEE, 2003.

[2] “IBIS Open Forum,” 2014.
[3] C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning:

a survey,” Integration, the VLSI Journal, vol. 19, pp. 1–81, Aug. 1995.
[4] C.-K. Cheng, J. Lillis, S. Lin, N. H. Chang, et al., Interconnect analysis

and synthesis. Wiley New York, 2000.
[5] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection networks: An

engineering approach. Morgan Kaufmann, 2003.
[6] S. Pasricha and N. Dutt, On-chip communication architectures: system

on chip interconnect. Morgan Kaufmann, 2010.
[7] W. C. Chew, Waves and fields in inhomogeneous media, vol. 522. IEEE

press New York, 1995.
[8] K. Michalski and J. Mosig, “Multilayered media Green’s functions in

integral equation formulations,” IEEE Transactions on Antennas and
Propagation, vol. 45, pp. 508–519, Mar. 1997.

[9] Y. Chow, J. Yang, D. Fang, and G. Howard, “A closed-form spatial
Green’s function for the thick microstrip substrate,” IEEE Transactions
on Microwave Theory and Techniques, vol. 39, pp. 588–592, Mar. 1991.

[10] G. Dural and M. I. Aksun, “Closed-form Green’s functions for general
sources and stratified media,” IEEE Transactions on Microwave Theory
and Techniques, vol. 43, no. 7, pp. 1545–1552, 1995.

[11] A. Niknejad, R. Gharpurey, and R. Meyer, “Numerically stable Green
function for modeling and analysis of substrate coupling in integrated
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 17, no. 4, pp. 305–315, 1998.

[12] J. Zhao, W.-M. Dai, S. Kadur, and D. E. Long, “Efficient three-
dimensional extraction based on static and full-wave layered Green’s
functions,” in Proceedings Design Automation Conference, 1998.,
pp. 224–229, IEEE, 1998.

[13] F. Ling and J. Jin, “Discrete complex image method for Green’s
functions of general multilayer media,” IEEE Microwave and Guided
Wave Letters, vol. 10, no. 10, pp. 400–402, 2000.

[14] F. Ling, J. Liu, and J. Jin, “Efficient electromagnetic modeling of
three-dimensional multilayer microstrip antennas and circuits,” IEEE
Transactions on Microwave Theory and Techniques, vol. 50, no. 6,
pp. 1628–1635, 2002.

[15] T. Sarkar, E. Arvas, and S. Rao, “Application of FFT and the conjugate
gradient method for the solution of electromagnetic radiation from
electrically large and small conducting bodies,” IEEE Transactions on
Antennas and Propagation, vol. 34, no. 5, pp. 635–640, 1986.

[16] Y. Zhuang, K.-L. Wu, C. Wu, and J. Litva, “A combined full-wave
CG-FFT method for rigorous analysis of large microstrip antenna
arrays,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 1,
pp. 102–109, 1996.

[17] J. Phillips and J. White, “A precorrected-FFT method for electro-
static analysis of complicated 3-D structures,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 16,
no. 10, pp. 1059–1072, 1997.

[18] Y. Massoud and J. White, “Simulation and modeling of the effect of
substrate conductivity on coupling inductance and circuit crosstalk,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 10, no. 3, pp. 286–291, 2002.

[19] B. J. Rautio, V. Okhmatovski, A. C. Cangellaris, J. C. Rautio, J. K.
Lee, et al., “The unified-fft algorithm for fast electromagnetic analysis
of planar integrated circuits printed on layered media inside a rectangular
enclosure,” IEEE Transactions on Microwave Theory and Techniques,
vol. 62, no. 5, pp. 1112–1121, 2014.

[20] J. R. James and P. S. Hall, Handbook of microstrip antennas, vol. 28.
IET, 1989.

[21] R. Garg, Microstrip antenna design handbook. Artech House, 2001.
[22] C.-I. G. Hsu, R. Harrington, K. Michalski, D. Zheng, et al., “Analysis

of multiconductor transmission lines of arbitrary cross section in multi-
layered uniaxial media,” IEEE Transactions on Microwave Theory and
Techniques, vol. 41, no. 1, pp. 70–78, 1993.

[23] A. E. Ruehli, “Inductance Calculations in a Complex Integrated Circuit
Environment,” IBM Journal of Research and Development, vol. 16,
pp. 470–481, Sept. 1972.

[24] A. Ruehli, “Equivalent Circuit Models for Three-Dimensional Mul-
ticonductor Systems,” IEEE Transactions on Microwave Theory and
Techniques, vol. 22, pp. 216–221, Mar. 1974.

[25] M. Kamon, M. Ttsuk, and J. White, “FASTHENRY: a multipole-
accelerated 3-D inductance extraction program,” IEEE Transactions on
Microwave Theory and Techniques, vol. 42, no. 9, pp. 1750–1758, 1994.

[26] R. F. Harrington and J. L. Harrington, Field computation by moment
methods. Oxford University Press, 1996.

[27] R. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE Press
Series on Electromagnetic Wave Theory). Wiley-IEEE Press, 2001.

[28] Y. Saad, Iterative methods for sparse linear systems. Siam, 2003.
[29] A. E. Yilmaz, J.-M. Jin, and E. Michielssen, “Time domain adaptive

integral method for surface integral equations,” IEEE Transactions on
Antennas and Propagation, vol. 52, no. 10, pp. 2692–2708, 2004.

[30] J. Phillips, Rapid solution of potential integral equations in complicated
3-dimensional geometries. PhD thesis, Massachusetts Institute of Tech-
nology, 1997.

[31] A. Niknejad and R. Meyer, “Analysis of eddy-current losses over
conductive substrates with applications to monolithic inductors and
transformers,” IEEE Transactions on Microwave Theory and Techniques,
vol. 49, no. 1, pp. 166–176, 2001.

[32] Y. Massoud, S. Majors, J. Kawa, T. Bustami, D. MacMillen, and
J. White, “Managing on-chip inductive effects,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 10, pp. 789–798, Dec.
2002.



13

[33] W.-H. Fang and A. Yagle, “Two methods for Toeplitz-plus-Hankel
approximation to a data covariance matrix,” IEEE Transactions on Signal
Processing, vol. 40, pp. 1490–1498, June 1992.

[34] N. J. Higham, Accuracy and stability of numerical algorithms. Siam,
2002.

[35] S. Boyd, P. Diaconis, and L. Xiao, “Fastest Mixing Markov Chain on a
Graph,” SIAM Review, vol. 46, pp. 667–689, Jan. 2004.

[36] J. Sun, S. Boyd, L. Xiao, and P. Diaconis, “The Fastest Mixing Markov
Process on a Graph and a Connection to a Maximum Variance Unfolding
Problem,” SIAM Review, vol. 48, pp. 681–699, Jan. 2006.

[37] J. Batson, D. A. Spielman, and N. Srivastava, “Twice-Ramanujan
Sparsifiers,” SIAM Journal on Computing, vol. 41, pp. 1704–1721, Jan.
2012.

[38] A. A. Benczúr and D. R. Karger, “Approximating st minimum cuts in õ
(n 2) time,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pp. 47–55, ACM, 1996.

[39] D. R. Karger and C. Stein, “A new approach to the minimum cut
problem,” Journal of the ACM (JACM), vol. 43, no. 4, pp. 601–640,
1996.

[40] D. A. Spielman and N. Srivastava, “Graph Sparsification by Effective
Resistances,” SIAM Journal on Computing, vol. 40, pp. 1913–1926, Jan.
2011.

[41] R. Grone, R. Merris, and V. S. Sunder, “The Laplacian spectrum of
a graph,” SIAM Journal on Matrix Analysis and Applications, vol. 11,
no. 2, pp. 218–238, 1990.

[42] F. R. K. Chung, Spectral Graph Theory. American Mathematical Soc.,
1996.

[43] B. Mohar, “Eigenvalues, diameter, and mean distance in graphs,” Graphs
and combinatorics, vol. 7, no. 1, pp. 53–64, 1991.

[44] R. Zhang, J. White, and J. Kassakian, “Fast simulation of complicated
3D structures above lossy magnetic media,” IEEE Transactions on
Magnetics, vol. 50, no. 10, 2014.

[45] J. Villena, A. Polimeridis, L. Wald, E. Adalsteinsson, J. White, and
L. Daniel, “MARIE – a MATLAB-based open source software for the
fast electromagnetic analysis of MRI systems,” in Proceedings of the
23nd Scientific Meeting of ISMRM, Toronto, Canada, 2015.

[46] A. Polimeridis, J. Villena, L. Daniel, and J. White, “Stable FFT-JVIE
solvers for fast analysis of highly inhomogeneous dielectric objects,”
Journal of Computational Physics, vol. 269, pp. 280–296, 2014.

[47] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in 2004 IEEE International Symposium on Computer Aided
Control Systems Design, pp. 284–289, IEEE, 2004.

[48] E. J. Candes and T. Tao, “The Power of Convex Relaxation: Near-
Optimal Matrix Completion,” IEEE Transactions on Information Theory,
vol. 56, pp. 2053–2080, May 2010.

[49] G. Strang and S. MacNamara, “Functions of Difference Matrices Are
Toeplitz Plus Hankel,” SIAM Review, vol. 56, pp. 525–546, Aug. 2014.


