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Abstract—We describe an adapted robust control technique
for analyzing microgrid stability under the uncertainty of
renewable sources and loads. Two realistic case studies are
presented to demonstrate the method’s effectiveness as a tool
for system design and analysis. Results show that the method
is able to provide a non-trivial lower bound for the minimum
damping ratio of the system, and can find the unstable
instances missed by Monte Carlo approaches.

I. INTRODUCTION

The integration of renewable energy sources may signif-
icantly complicate power system stability. Their short-time
variations introduce persistent, small-signal disturbances
on the network; the uncertainty in their long-term power
production increases the dynamic range of network states.

Stability issues are particularly significant for microgrids,
which are smaller—both physically and in power rating—
when compared to conventional distribution networks. Mi-
crogrids have lower inertia and tighter coupling between
elements, so integration of renewables can make stability
problems more likely to occur. Moreover, microgrids fre-
quently undergo topological changes, due to routine opening
and closing of switches, as well as the addition of new
sources and loads, even after controls have been set-up and
the system is operational.

Under typical conditions, disturbances caused by the vari-
ability of renewables are small enough to be analyzed using
linearization, a procedure known as small-signal analysis
[1], [2]. Loosely speaking, this involves computing the
damping ratio of the system’s linearization, ¢, and insuring
that the damping ratio exceeds a given threshold. When
subject to uncertainty in the system, small-signal stability
analysis is required for all feasible uncertain scenarios,
a computationally daunting task. For example, with solar
irradiance being uncertain and unknown, the system should
remain stable for all combinations of solar panel outputs,
from zero up to the maximum for each individual panel.

By applying robust control techniques, this paper pro-
poses to provably guarantee small-signal stability for mi-
crogrids under the uncertainty of renewables and loads.
The method works by establishing a lower-bound for the
minimum damping ratio, which is defined as the damping
ratio of the least-stable feasible scenario. Clearly, if the
lower bound is shown to be acceptable, then the worst-case,
least-stable scenario must still be stable, and it immediately
follows that all other uncertain scenarios are also stable.

The robust approach contrasts with most existing methods
for analyzing small-signal stability under uncertainty, all
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sharing a common probabilistic theme. The basic Monte
Carlo method works by analyzing the statistics for ran-
domly selected uncertain scenarios. Its efficiency can be
enhanced by quasi-random sampling, moment matching,
collocation [3], [4] and incorporating sensitivities [5], [6].
While probabilistic methods are highly effective at analyz-
ing the average-case, they are ineffective at probing the
worst-case.

The idea of analyzing power systems using techniques
borrowed from robust controls reappeared frequently in
the literature, particularly after the development of efficient
primal-dual interior point methods [7]-[11]. Despite this, ro-
bust methods have yet to become widespread. A significant
reason is that their computation complexity, on the order of
O(n*), still grows too quickly for traditional power systems,
which contain thousands of elements, i.e. with n > 10°.
But microgrids are significantly smaller, of sizes comparable
to the (larger) control systems commonly studied in robust
control. With the development of high-power, commercial-
grade solvers [12], and increasingly inexpensive access to
massive computation power, semidefinite optimization is
becoming a viable tool for power systems stability analysis
[13], [14].

To compare the proposed approach and traditional meth-
ods, we present two case studies that represent simple but
realistic scenarios. The starting point for both consists of a
simple two-bus system with a single machine and a single
load connected through a transmission line. In Case Study
1, we consider the scenario of expanding the system by
interconnecting solar photovoltaic (PV) panels somewhere
along the transmission line. This scenario is encountered
frequently in new or existing off-grid microgrids that wish to
minimize fuel consumption. Case Study 2 expands the sys-
tem even further by adding a second machine, incorporating
two extra loads buses and changing the network to allow for
a ring topology. The resultant system represents a variety
of realistic scenarios, such as a small community isolated
from the grid, or a university campus that is temporarily
disconnected from the utility.

II. THEORETICAL BACKGROUND

A. Small signal stability

Consider a state-space model! of a power system
i(t) = f(x(t)) +w(t)  x(0) = zo, (1)

'In practice, power systems are modeled as differential algebraic sys-
tems. Extension to differential algebraic equations are straightforward, via
singular perturbations and / or descriptor state-space formulations; see [15],
[16]. For brevity, these extensions are omitted in this paper.
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Figure 1: Small-signal stability on the complex plane. Every
eigenvalue A\, = —ay, + jwi placed in the shaded region
will satisfy the decay rate constraint ay > i, and the
decay ratio constraint o /|Ak| > Cmin-

where z(t) € R™ is the vector of state variables and w(t) €
R™ represents the disturbances on the system. The system
is in equilibrium z(0) = o when it satisfies

f(xo) =0, 2

so that without disturbance, i.e. by setting w(t) = 0, the
system would remain fixed at x(t) = x¢ for all time.

Define A := V,f(zo) as the Jacobian matrix of f(-)
evaluated at the equilibrium zy. Then the stability of (1)
about its equilibrium is captured by the linear time-invariant
system

z(t) = Azx(t) + w(t). 3)
Two common metrics of stability are the damping ratio,
Cétgn{—ReAkﬂAM}, 4)

and the decay rate,
as mkin{—Re Akt Q)

in which we have labeled the k-th eigenvalue of A as A.
Using these definitions, a power system is said to be
small-signal stable (about its equilibrium x) if its decay
rate and damping ratio satisfy certain thresholds:
¢ = Gim O 2 Qi (6)
For large power networks, minimum damping ratios are
usually specified to exceed 3% to 5%. Low-frequency os-
cillations may be required to have damping ratios as high as
15% [9]. In comparison, minimum decay rate specifications
are more commonly found in the design of control systems.
From a control theory perspective, these stability criteria
form a trapezoidal envelope on the complex plane, as shown
in Fig. 1. In order for A to be deemed “sufficiently stable”,
all of its eigenvalues must lie within this envelope. Clearly,
both ¢ and o must be strictly positive if a system were to
be stable.

B. Parametric uncertainty

It is often convenient to describe uncertain systems
as deterministic with respect to uncertain parameters. In
the context of the power system equations in (1), an I-
dimensional parameter variable, ¢, may be added, as in

#(t) = f(z(t),q) +w(t),  =(0) ==zo(q), ()

so that every value of ¢, constrained within a parameter
space Q € R!, is associated with an uncertain scenario to be
considered and analyzed. To illustrate, a system containing [
solar panels may define ¢ to capture the uncertainty of solar
irradiance. In this case, each ¢i1,¢2,...,q can be used to
describe the power output at solar panel, and Q to constrain
each output to lie between zero and its maximum.

Every uncertain scenario, g, also has its own steady-state,
x0(q), and Jacobian matrix evaluated at that steady-state,
A(q) := Vfz(z0(q),q). From this, a linearized dynamical
system is defined for each value of g, as in

(1) = A(g)a(t) + w(t). ®)

Just like in (3), the stability characteristics of (8) are
captured by the matrix A(q).

Let us define the ¢(+), a(-) functions to yield the damping
ratio and decay rate of a given matrix, and {2 be the space
of all Jacobian matrices obtainable under uncertainty

Q={A(q): q € Q}. €)

Analogous to the criteria in (6), if the minimum damping
ratio ((nin) and the minimum decay rate (o, ) defined as

Qmin 2= min{a(A(q)) : ¢ € 9}, an
both satisfy Cnin > Cim and amin > Quim, then every

uncertain scenario must be small-signal stable. In this case,
we say that Q is stable (for brevity).

(10)

C. Robust stability lower-bounds via LMIs

When €, defined in (9), satisfies certain conditions, lower-
bounds for (., and @, can be computed by solving
convex optimization problems known as linear matrix in-
equalities (LMIs). In particular, this is possible when €2 is
a polytope, i.e., when {2 can be written as the convex hull
of m “vertex” matrices, A1,..., A,

Q= COHV{Al, AQ, ey Am}

Given a matrix polytope, (2, the following statements® are
well-known [9], [17].

Proposition 1 (Minimum decay rate). Every matrix in the
polytope §) has a decay rate that exceeds the lower-bound
o, defined as the solution to the optimization problem

maximize o
subject to AiTX + XA; +2aX <0 Vi,
X=XT»1.

Proposition 2 (Minimum damping ratio). Every matrix
in the polytope ) has a damping ratio that exceeds the

2We use standard notation in matrix optimization. Given symmetric
matrices X,Y, we say that X > Y iff the matrix X — Y is positive
semidefinite (i.e. its eigenvalues are nonnegative).



lower-bound (yp, defined as the solution to the optimization
problem

maximize ¢
. v(ATX + XA;) ((ATX - XA4A)) )
subject to C(AX — XAT) D(ATX + X A)) =<0 Vi,
0<¢v<l V4% =1,
X=X"»1I

Both optimization problems in Props. 1 & 2 are quasi-
convex, and can be efficiently solved using any semidefinite
programming solver. In this paper, the problems are parsed
using the YALMIP package [18], and solved using MOSEK
[12].

In practice, 2 is not usually a matrix polytope, and
it is often necessary to construct an outer approximation
Qout 2 §2. This can be achieved in many ways. In this paper,
we use the state-space sampling approach of [19], and the
inclusion €2,,; 2  is guaranteed by a priori knowledge of
the Lipschitz constants associated with the A(q) operator in
(9). Other techniques include Lur’e-type sector conditions
[13], polynomial-based linear matrix inequalities [20], [21],
and sum-of-squares programming [22].

We conclude this section by noting that robust stability is
inherently pessimistic. Since (;p < (nin and agp < Qin,
it is possible for both (j;, oy to indicate instability when
every uncertain scenario is in fact stable. This conservatism
arises for two reasons:

1) Quadratic stability. Both Props. 1 & 2 constraints,
based on quadratic stability, are sufficient but not
always necessary conditions for stability [23].

2) Outer approximation. If the €,,; in Props. 1 & 2 is
larger than ), then it is possible for the least stable
element of €,,; to be outside of €. In other words,
the least-stable element found may not actually be
realizable.

Although it dramatically increased computation cost, both
sources of conservatism were reduced by dividing ) into
partitions and employing a branch-and-bound process [7],
[24], [25].

III. MICROGRID MODELS

The example microgrid systems considered in this paper
are constructed with four elements:

1) Diesel generators that interface with the network
through a synchronous machine;

2) Solar PV panels that connect to the system through
inverters;

3) Constant-impedance loads
resistor-inductor tanks;

4) Transmission lines modeled as series resistor-inductor
branches.

modeled as parallel

A multitude of microgrid systems can be built using these
four elements as both sources with and without inertia are
represented, and it incorporates loads with a variety of
power factors. Extending the model to include other types
of sources (such as gas-turbine generators) and other types
of static and dynamic loads is possible with this formalism,
but it is left as future work.

A. Diesel Generator

The diesel generator sources were modeled in detail and
included the following blocks:

1) Synchronous machine with mechanical, armature,

field and damper dynamics;

2) Diesel engine and governor (speed controller);

3) Automatic voltage regulator (AVR) with exciter and

power system stabilizer (PSS).

All these blocks are required for a complete small-signal
representation of this source [26]. Power-frequency (PF)
droops and line compensators for real and reactive power
sharing were accounted for in the power flow calculations
used to determine the steady state operation of the system.
Limits on the prime mover output torque, exciter output
voltage, secondary control and protective elements were not
included in the model as they do not affect the small-signal
behavior.

To obtain significant results, realistic parameters for the
synchronous machine, and appropriate models for the diesel
engine and the AVR are needed; they all can have a
significant impact on system small-signal dynamics. For
that, machine parameters were taken from technical speci-
fications of a commercial generator manufacturer [27], and
the AVR and exciter models were taken from IEEE Std.
421.5 [28]. Type DCIA exciter was chosen as it has been
widely used in industry.

The models for prime movers have not been standardized
and several representations can be found in literature. We
selected the diesel engine model presented in [29] that was
shown to match experimental data; this model has also been
used in [30] for stability studies. The parameters in [29]
were given for a 0.85 MVA engine and we had to scale
them down to the rating of the machines in our systems.
A linear relationship between the engine time constant and
power rating was assumed.

B. Solar Photovoltaic Panels

The solar PV panels and inverter were modeled with three
main blocks following studies such as [31]:

1) A filter, consisting of an inductor and its parasitic
resistance;

2) Inner current control loops;

3) Outer control loops.

The filter inductor was set to a value of 1mH which
was found to properly filter the inverter current ripple
at 20kHz caused by switching. The inner current control
loops were design for a critically damped response. The
inverter was operated in “Slave” (or “Grid-following”) mode
with a Phase Locked Loop (PLL) used to synchronize it
to the system. We assumed that PLLs track phase and
correct small errors almost instantaneously and therefore
PLL dynamics were ignored in the small-signal model. An
average model of the converter was used so that the switch
bridge characteristics and delays were also ignored.

With the outer control loop, inverters were operated in
three different modes: (a) Unitity power factor, (b) Voltage
support (i.e. using QV droops), and (c) Voltage regulation
(i.e. operation as a P-V bus). For the last two cases, after the
inverter power rating was reached, priority was given to real
power output. The inverter real power output was assumed
to follow changes in solar irradiation instantaneously and
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Figure 2: Single line layout of system for Case Study 1

therefore DC link and maximum power point tracker dy-
namics were not included in the small signal model.

C. Network interconnection

In large power systems, transmission line dynamics are
usually assumed to be instantaneous. That is reasonable if
both the frequency and voltage control loops are several
orders of magnitude slower than the line time constant.
In microgrids, however, the presence of inverter-interfaced
sources, the fast acting AVR in the machines, and the low
inertia, combine to create strong coupling between the line
and the element states.

Accounting for the network, the system model becomes
a set of differential-algebraic equations (DAEs),

d
ax = f(xay)v

where € R”™ are the states of the system (e.g. machines
fluxes, rotor angles and velocities, inverter filter currents,
etc), and y € R™ are the algebraic variables (bus voltages).
As mentioned above, the theoretical background presented
in Section II can be extended to DAEs.

0=g(z,y), (12)

IV. CASE STUDY 1: INTERCONNECTION OF PV PANELS
TO A TWO-BUS SYSTEM

Two case studies are given below and used to compare
the proposed robust approach to the traditional stochastic
method. The system for the first case study is constructed
starting with a simple two-bus system where a diesel gen-
erator feeds a single load through a transmission line, and
then PV panels are interconnected somewhere along the line
as illustrated in Fig. 2. From a design point of view, we
want to (a) guarantee that the system will be stable after
the insertion of the panels and (b) quantify the impact that
the panels will have on the system stability.

The diesel generator in Fig. 2 is a 60kVA 480V 1800 rpm
machine, and the transmission line is specified to be of 1
km in length, with a resistance of 0.1¢2 and an inductance of
66 pH. The generator is operated in isochronous mode, i.e.
with its PF droop coefficient set to zero. Its control system
(exciter, governor, PSS) was designed prior to the insertion
of the solar panels and was set to achieve an approximate
damping ratio of ~15% at high load and low power factor.

Three sources of uncertainty are considered:

1) PV panels insertion point, labeled x in Fig. 2. The
value of x = 0 corresponds to connecting the panels
right next to the generator terminals, while x = 1
represents a connection at the load.
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2) Load in kVA, labeled S),44, and power angle, labeled
®10ad- The load is modeled to be residential, ranging
from 40-60 kVA with a power angle from 0° to 15°
(i.e. power factors from about 0.95 to 1.00).

3) Real power output of solar panels, labeled P,
whose value ranges between 0 kW during the night
and 30 kW at peak day-time irradiance. This way, the
peak renewable penetration achievable is 50%.

A. Monte Carlo Analysis

Monte Carlo and, in general, any stochastic method pro-
vides optimistic over-estimates for the minimum damping
ratio ({yp) and for the minimum decay rate of the system
(aup). However, they are unable to guarantee that the worst-
case condition has been found or even provide a certificate
of stability. Results for Case Study 1 are shown in Fig.
3. The value of ( for every instance of the system was
computed relatively fast, but, as seen in Fig. 3, 10,000
samples were needed to find the value of (,, = 8.6%. Fur-
thermore, as the number of uncertain parameters increases,
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Figure 4: Contour plot of damping ratio { with PV panels
inserted at generator (z = 0) and providing only reactive
power support (P;,,, = 0).

the required number of samples to find an upper bound that
provides valuable information increases as well.

B. Robust lower bounds

While the stochastic analysis provided optimistic over-
estimates (Cyp and «p), the robust method presented in
Section II-C is able to calculate pessimistic under-estimates
of the same variables ((;;, and «g3). In this application,
lower bounds are useful because they can guarantee that
the system will be stable under any conditions. By solving
the LMIs, we found the lower bounds (;; = 8% and
agp = 1.48. Note that these lower bounds are (mildly) more
conservative than necessary, due to the need to form an outer
approximation (see Section II-C). The number of states in
the system is sufficiently low (n = 27), and the LMIs in
Section II-C computed each bound in ~200 seconds on a
12-core machine running MOSEK 7.1.0.12 [12].

C. Results and Discussion

By using the proposed robust method, it was possible to
compute the value of ¢ = [z, Sioad; Pload; Pinv| that resulted
in the instance of the system with minimum damping ratio.
We found that connecting the PV as close as possible to the
generator (x = 0) , providing only reactive power (Pj,, =
0), and operating at maximum load (Sj,qq = 60kVA) with
unity power factor (cos ¢ = 1) resulted in the least damped
system. The described system correspond to the condition
where the generator is loaded the most, and has a damping
ratio of at least (;;, = 8%. Figure 4 shows a contour plot of
¢ for the allowed values of S;,,q and cos ¢. Notice that for
this system, the worst-case condition is located at a corner
of the parameter space Q, which means that all unknown
variables take a value at the limit of their range. This will
not be true in general (see Case Study 2), and using the
simple heuristic of testing the corner values of the parameter
space to find the least-stable system might lead to incorrect
results.

A graphical comparison of the results obtained with the
traditional Monte Carlo approach and the robust method is
shown in Fig. 5, for different points of PV panel insertion.
In these plots we can clearly appreciate the advantage of
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Figure 5: Minimum damping ratios across all uncertainty in
system 1.

providing a lower bound for the minimum damping ratio.
While the Monte Carlo results establish that the actual
minimum damping ratio will be below its corresponding
line, the robust result guarantees that the actual value will
be above it. This means that the robust method can provide
a certificate of stability, while the Monte Carlo results only
indicate that the system is likely to be stable.

In this case study, the least-stable eigenvalues of the
system were associated with the mechanical modes of the
system. This was expected, as the inertia time constant
of the machines and engines is longer than the electrical
time constants of the system. This result, however, is not
general and changing the diesel generator parameters will
lead to different results. An exploration of the complex plane
eigenvalue plot of the system also revealed that, for the
chosen parameters, the largest impact of the PV panels is
caused by their effect on the operational equilibrium point
xo. The inverter states have a small effect on the least
damped mode, so that it is possible to apply a model order
reduction technique before solving for the LMI. This route
seems promising as a way to extend this methodology and
will be explored in future work.
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V. CASE STUDY 2: INTERCONNECTION OF PV IN A
TwWO-MACHINE SYSTEM

The presence of uncertainty in power systems will often
lead to unintuitive results, which cannot be found using
simple heuristics. Although in Case Study 1 the least stable
condition was found to be at a corner of the parameter space,
this will not be true in general. In the Case Study 2, we
consider the larger two-machine five-bus system shown in
Fig. 6. As with the first system, it was built from a simple
two-bus system so that the control parameters of the 60
kVA machine were not changed as new elements were being
added (except for adding a non-zero droop coefficient).
The second diesel generator is a 25kVA 480V 1800 rpm
machine, and the distance between all elements is assumed
to be constant at 1 km, so that transmission line parameters
are the same as in Case Study 1.

Several characteristics make this system interesting and
relevant for uncertainty studies:

1) Power is supplied by two generators sharing real
power and interaction between them is expected.

2) The control parameters of the larger generator are not
modified from Case Study 1 because the new system
is assumed to be built after the first.

3) The network can operate in a radial or a ring topology,
so that power flow can change significantly with the
operation of the switches.

4) As it is sometimes the case in real scenarios, the
maximum and minimum total load is known, but its
distribution among the different load buses is not.

Five sources of uncertainty are considered in this case study:

1) Inverter insertion point. The branch at which the in-
verter is connected is described by an integer variable
and the position within that branch is described by a
continuous variable = € [0, 1] as per Case Study 1.

2) The status of the two switches, which are determined
by two binary variables.

3) Total load in kVA, labeled S;,.q, and power angle,
labeled ¢;,qq. This value ranges from 30 kVA to 85
kVA, and represents the addition of the three load
buses shown in Fig. 6.

4) The share of the total load connected to each load
bus, represented by three variables ky, ko, k3 € [0, 1]
satisfying k1 + ko + k3 = 1.

5) PV panels real power output, labeled P;,,, whose
value ranges from 0 kW during the night to 30 kW
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Figure 7: Monte Carlo analysis for switch 1 open and
switch 2 closed: (a) Complex plane eigenvalue plot over
100 random samples
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at peak day-time irradiance.

A. Monte Carlo Analysis

As with the previous case study, the Monte Carlo method
was used to determine an optimistic over-estimate for the
minimum damping ratio (). Fig. 7a shows an histogram
of the obtained values of (j for the configuration with
switch 1 open and switch 2 closed. It can be observed that
in the vast majority of the conditions the system exhibits
a reasonable level of damping ({ > 3% in 99.6% of the
10,000 random samples), but certain configurations can take
the system below the desired threshold. After sampling
10,000 conditions, we found the minimum damping ratio
to have an upper bound of (,;, = 0.94% . Fig. 7b shows
the eigenvalue distribution on the complex plane after 100
random samples. Note that the rightmost eigenvalue is
dangerously close to the imaginary axis, but remains on
the left-half plane.



Table I: Stability over-estimates via Monte Carlo (“MC”)
over 100, 1000 and 10,000 samples and under-estimates via
linear matrix inequalities (“LMI”).

Minimum damping ratio (¢) over uncertainty in percentage [%]

SW1I  SW2 MC (10°) MC (10%) MC (10h LMI

closed open 4.00 1.32 0.94 unstable
closed  closed 1.97 1.97 0.51 unstable
open closed 3.64 2.22 unstable unstable

Minimum decay rate («) over uncertainty in per-seconds [s—1]

SW1 SW2 MC (10?) MC (10°) MC (10%) LMI
closed open 0.684 0.231 0.162 -0.4
closed closed 0.340 0.340 0.086 -0.4
open closed 0.639 0.390 -0.047 -0.4
40 »
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Figure 8: Eigenvalue plot for an unstable system found via
the LMI method. The instance of the system corresponds
to connecting the PV panels in branch 1 at x = 0.99 (next
to Bus 2) with switch 1 closed and switch 2 open. Load
was close to its maximum (Sj,qq = 84.9 kVA) and power
factor near unity (cos ¢ = 0.99). Distributed over the three
buses was as follows: k1 = 0.81, ks = 0.01, k3 = 0.18.
This particular case has decay rate o ~ —0.2 and damping
ratio ¢ =~ —1%.

B. Robust analysis

The robust method was used to compute the lower bounds
Cip and ayp. Interestingly, we found the lower bounds to
be unstable in all configurations of the switches. Having
an unstable lower bound means that the system might be
unstable. In this case, however, we were able to use the
least stable parameters ¢ found by the the robust analysis
to prove that the system is unstable. It is worth noticing
that due to the size of this system (n = 77) solving the
LMI required several days of computation, so extending
this method to larger systems will require a model order
reduction technique and an application-specific LMI solver,
such as those in [32], [33].

C. Results and Discussion

As mentioned above, some instances of the system were
found to be unstable. From Fig. 7a we know that they
represent a small minority of all the possible scenarios,
but improper system design and bad luck can lead to such
conditions. Table I presents the over-estimates ((,, and
aup) using Monte Carlo and the under-estimates ((;; and

ayp) using LMIs for the three valid configurations of the
switches. Notice that Monte Carlo was able to find an
unstable condition in one of the 10,000 sampled scenarios.
The possibility of finding such cases is low, as they occur far
from the mean of the probability density function for (. In
the cases were Monte Carlo provided stable over-estimates
(Cup and «,p) and instability was not guaranteed, the system
was proved to be unstable by calculating the eigenvalues of
the worst-case instance found by the LMIs.

An example of an unstable instance of the system found
by the LMI method is shown in Fig. 8. This unstable
scenario corresponds to maximum load (S;,qq = 84.9 kVA)
and near unity power factor (cos ¢ = 0.99), with PV panels
providing a low value of real power output (P;,, = S80W)
but providing a large amount of reactive power to regulate
its terminal voltage (i.e. it was operated in voltage regulation
mode). The position for the inverters is next to Bus 2 where
more than 80% of the total load is connected; the rest of
the load is connected in Bus 5, leaving Bus 4 only very
lightly loaded. The above conditions require the generators
to operate near unity power factor (as most reactive power
is provided by the inverter) and heavily loaded, which leads
to small signal instability. We emphasize that the unstable
scenario was not found at a corner of the parameter space
Q; conversely, checking only the corners of @ would not
have revealed the instability.

The instability in this Case Study can be explained by
three factors: (a) Improper control parameters for the large
60 kVA diesel generator, (b) operation of the inverter as a
P-V bus, and (c) high penetration of renewables that leads
to a large inverter connected in the system. As explained
above, this system was constructed starting from a simple
two-bus system with a 60 kVA diesel generator feeding
a single load. The system was then expanded to include
a second machine and other loads, but control parameters
for the original machine remained unchanged. This process
mimics the way real-life microgrids are sometimes built and
expanded; one presumes that the system can be made stable
by properly adjusting the control parameters of the large
diesel generator, under the conditions that lead to Fig. 8. On
the other hand, inverter control via voltage regulation (i.e.
behaving as a P-V bus) often created the largest disturbance
in the system, especially when connected close to the largest
load and with low real power output as more of the inverter
power rating could be dedicated to reactive power. It is
worth mentioning that the scenario corresponding to Fig.
8 was not unstable when the inverter was operated at unity
power factor or just providing voltage support with a droop
of 1000 VAr/V.

VI. CONCLUSIONS

The Monte Carlo technique and our robust stability
method based on LMIs were applied to two case studies of
microgrids with uncertainty due to renewable sources and
loads. The ability of robust stability methods to generate
provable lower bounds is shown to be a valuable tool during
system design and analysis of microgrids. Our approach
either guaranteed stability (such as Case Study 1) under any
condition, or uncovered instability in a few instances missed
by Monte Carlo (such as Case Study 2). Although the func-
tionality and usefulness of the robust stability technique was
demonstrated, it required a large computational effort given



the system had only 77 states. Therefore, the next steps
will be to implement model order reduction to eliminate
unnecessary states, and to use more efficient solvers for the
LMIs.
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