
1

Fast simulation of complicated 3D structures above lossy magnetic
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A fast numerical method is presented for the simulation of complicated 3D structures, such as inductors constructed from litz or
stranded wires, above or sandwiched between planar lossy magnetic media. Basing upon its smoothness, the quasistatic multilayer
Green’s function is numerically computed using finite differences, and its source height dependence is computed using an optimal
Toeplitz-plus-Hankel decomposition. We show that a modified precorrected FFT method can be applied to reduce the dense linear
algebra problem to near-linear time, and that frequency-dependent setups can be avoided to result in a considerable speed-up.
Experimental verifications are made for a 16-strand litz wire coil, realistically modeled down to each individual strand. Results
are obtained in 2-3 hours, showing an excellent agreement to measurements, and can be used to study the impact of transposition
patterns in litz wire construction.
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NOMENCLATURE

r Observation point located at (x, y, z).
r� Source point located at (x�

, y
�
, z

�).
ρ Cylindrical radius of the vector (r− r�):

ρ ≡
�
(x− x�)2 + (y − y�)2.�

G
�

Multilayer Green’s function. The brackets indicate
that this is a second order tensor, i.e. a dyadic tensor.

G
free Free-space Laplacian Green’s function; a scalar func-

tion defined in (9).�
G

add
�
Additional Green’s function component due to the
presence of a multilayer; a dyadic tensor function
defined in (8).

Jw The w-th component of J, where w ∈ {x, y, z}.
[A] The matrix or dyadic tensor named “A”.
Ai,: The i-th row of matrix [A].
A:,j The j-th column of matrix [A].

I. INTRODUCTION

MAGNETIC devices for power electronics are designed
to maximize energy storage or transfer while minimiz-

ing losses. In applications where the geometry is approxi-
mately planar, the enhancement of energy storage is often
achieved by placing the conductor coil on top or sandwiched
between a magnetic multilayer media structure that serves as
the magnetic core, as illustrated in Fig. 1. To minimize losses,
the coil is often wound using some form of twisted, stranded
or litz wire conductor pattern. Devices constructed in this way
are common, and are found in applications such as planar
monolithic inductors and transformers [1]–[3] and inductive
power transfer systems [4]. Induction heating coils can also
be viewed in this manner, and in these cases the multilayer
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Figure 1: Illustration of the planar multilayer systems exam-
ined within this paper.

structure is a lossy-magnetic material that also serves as the
load [5].

A fully three-dimensional numerical simulation of a litz
wire coil, complete with realistic transposition patterns, is
generally considered intractable even without the nearby mul-
tilayer media [6]–[8]. For coils in free-space, matches to
experimental data can be achieved using a variety of simplified
models, employing prior knowledge of the expected field and
current density distributions, as well as symmetry between the
strands in each bundle [6]–[9]. However, for lossy-magnetic
multilayer structures, each strand of the coil experiences a
proximity effect not only due to the nearby strands, but
also due to the multilayer structure, complicating the overall
analysis [7], [10].

In this paper, we present a general, numerical approach
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to the litz-wire over lossy-magnetic structure problem. The
objective is to realistically model the transposition pattern of
the litz wire, and the interactions between the strands and
the multilayer media, without making a priori assumptions
about field and current distributions, and without heuristics that
must be calibrated to experimental measurements. The issue
of intractable complexity is reintroduced with a numerical
approach, but we present a number of innovations in this paper
that largely overcome this challenge.

Firstly, the method avoids discretizing the surrounding free-
space and multilayer media, by the use of the multilayer
Green’s function [11]. This technique is widely used in
microelectronic and microwave applications [12]–[15], but
normally introduces a complicated Green’s function that must
be carefully evaluated with a Sommerfeld integral. In the
quasistatic limit, we show in Section III that the Green’s
function is analytic smooth, and harmonic within free-space.
Under these very special conditions, the Green’s function
can be directly evaluated to arbitrary accuracy using finite
differences, a simple, well-established numerical technique
that can be implemented with ease. Additionally, this finite
differences approach also accommodates for continuous ma-
terial variations in the ẑ-direction.

However, the multilayer Green’s function is translation-
variant along ẑ, and each finite differences solution is valid
only for a single source point height z

�. To minimize the
number of finite differences solves needed to compute the
full Green’s function, and to put it in a form compatible with
the FFT, we present in Section IV an optimal Toeplitz-plus-
Hankel decomposition. By taking the values of the Green’s
function at just four carefully chosen source points z� as input,
the decomposition is able to exactly reconstruct values of
the Green’s function at all other values of z

�. Convolution
with the multilayer Green’s function can then be performed in
O(n log n) using the FFT.

Finally, we extend the smoothness property of the Green’s
function to frequency sweeps of the coil impedance. Normally,
this procedure involves the use of a fast integral method (e.g.
[16]–[19]), which compresses the governing system of linear
equations and solves them iteratively. However, where the
Green’s function is frequency-dependent, the time-consuming
setup must be repeated at each new frequency. In Section V
we show that when the smooth quasistatic Green’s function is
applied to the precorrected FFT method [17], only one setup
is needed for all frequencies. This leads to a speed advantage
of more than five times when compared to the original pFFT
algorithm in Section VIII.

In Section VI, we compare the accuracy of the numerical
model to established analytical formulas. By reproducing the
governing assumptions of the analytical models, results show
that the numerical model is able to converge to 3 or more
significant figures of accuracy.

Finally, in Section VII, we apply the method to a litz wire
induction heating coil. We make measurements of all the
characteristic dimensions of the coil, then construct a realistic
model of the coil detailed down to each of its 16 individual
strands, containing 909,504 individual elements. Predictions
are made for the series inductance, resistance, and quality

factor of the coil in free-space, and 11mm below a copper
plate, computed on a workstation computer in 2-3 hours.
The results show excellent agreement with measurements to
experimental errors, and highlights the ability of the numerical
method to fully account for the coupled interactions between
the strands of the litz wire and the multilayer structure. By
realistically modeling the woven structure of the litz wire,
the simulation captures a number of subtle, geometry-sensitive
characteristics that are missed by less detailed models.

II. FORMULATION

A. Governing Equations and Problem Geometry

In the presence of magnetic, conductive material, the electric
field E is described by the magnetic diffusion equation [20]–
[22]:

∇×
1

µ
∇×E = −jω(σE+ Jexc). (1)

The formulation is constrained to inductive interactions in
order to limit the degrees of freedom considered. It is assumed
that capacitive displacement currents and charge accumulation
are both second order:

jω�E ≈ 0, ∇ · �E ≈ 0. (2)

The excitation current density, Jexc, is due to current flow
within the excitation conductors. As shown in Fig. 1, the
conductors within this paper are positioned in a mostly planar
fashion relative to the magnetic material layers, confined to
a single layer of free-space denoted as Ω0, but spaced away
from the interface planes.

Beyond the free-space layer are an arbitrary number of
layers, each with its own conductivity σ(r), permeability µ(r),
and permittivity �(r) = �0. We impose that the layer properties
are constant over x and y such that translational invariance and
isotropy can be established in these directions. No restrictions
are imposed in the z direction; it is possible for each layer
to have piecewise constant or continuously varying properties
along z.

Substituting the quasistatic assumptions in (2) and expand-
ing yields three equations for the three field components; for
the two directions transpose to the layers, w ∈ {x, y}:

∇
2
Ew +

1

µ

∂µ

∂z

�
∂Ew

∂z
−

∂Ew

∂w

�
− jωµσEw

= jωµJ
exc
w , (3)

and for the direction normal to the layers, z:

∇
2
Ez − jωµσEz = jωµJ

exc
z . (4)

At discontinuous material interfaces where ∂µ/∂z is un-
bounded, boundary conditions can be used:

E|z=ζ− = E|z=ζ+ , (5)
1

µ

�
∂Ew

∂z
−

∂Ez

∂w

�����
z=ζ−

=
1

µ

�
∂Ew

∂z
−

∂Ez

∂w

�����
z=ζ+

. (6)

Here, z = ζ is the interface plane.
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B. Integral Equation Formulation
To obtain the electric field, E, given a current excitation,

Jexc, the standard approach is to solve the governing equations
(3)-(6) using the finite element method [23]–[25]. Alterna-
tively, an integral equation formulation can be used to to
evaluate E from Jexc directly, as in:

E(r) = −jωµ0

ˆ
ΩC

�
G(r, r�)

�
Jexc(r�) dr�, (7)

where the integration domain ΩC is restricted to the support
of the excitation current density.

Here, the Green’s function dyadic tensor
�
G
�

is the solution
of (3)-(6) with a Dirac delta function excitation on the right
hand side in each of the three Cartesian directions, and varies
according to cylindrical radius, ρ, field point height, z and
source point height, z

�. We refer the reader to [15] for a
thorough description of the general multilayer Green’s func-
tions method, and to [26], [27] for more accessible derivations
specific to the lossy-magnetic problem.

For the remainder of this paper, we decompose the Green’s
function into a singular free-space component, and an addi-
tional component caused by the presence of the magnetic-
conductive multilayer media:

�
G(r, r�)

�
=

�
I
�
G

free(r, r�) +
�
G

add(r, r�)
�
, (8)

where
�
I
�

is the identity dyadic tensor, Gfree is the singular,
frequency-independent free-space Green’s function:

G
free(r, r�) =

1

4π

1

�r− r��
, (9)

and
�
G

add
�

is named the “added Green’s function” for con-
venience. The separation of the singularity G

free from the
Green’s function is an important part of the formulation. As
further explained throughout the remainder of this paper, the
smoothness of

�
G

add
�

in the source layer Ω0 allows numerical
methods based on Taylor polynomial expansions to be used,
such as the finite differences method in Section III and the
modified precorrected FFT method in Section V.

From (3)-(4), it readily follows that only the x̂x̂, ŷŷ, ẑẑ,
ẑx̂ and ẑŷ components of

�
G

add
�

are non-zero:

�
G

add
�
=




G

add
xx 0 0
0 G

add
yy 0

G
add
zx G

add
zy G

add
zz



 .

Technically, all five components of
�
G

add
�

are needed to fully
account for the presence of the multilayer media. However, if
net current flow is overwhelmingly dominant in the transverse
directions, then it can be assumed that Ez ≈ 0 in the multilayer
media. This sets the following three components to zero:

{G
add
zx , G

add
zy , G

add
zz } ≈ 0, (10)

reducing the dyadic
�
G

add
�

to a single scalar component,
G

add
xx = G

add
yy . Substituting (8), (10) into (7) also reduces the

dyadic integral of (7) into a scalar integral:

E(r) = −jωµ0

ˆ
G

free(r, r�)Jexc(r�)

+G
add
xx (r, r�)

�
x̂Jexc

x (r�) + ŷJexc
y (r�)

�
dr�. (11)

Hence, the ansatz in (10) provides a considerable reduction
in complexity. For “almost-planar” problems, experimental
experience suggest that (10) is an acceptable approximation
[1], [3], [28]. Since the majority of multilayer problems have
relatively flat geometries, the method presented within this
paper was developed with (10) built in as an assumption.
Experimental results presented in Section VII confirm that
the prediction accuracy is not significantly affected for the
geometries considered in this paper.

However, where current does not overwhelmingly flow
transverse to the multilayer, e.g. in a vertically oriented coil,
all five non-zero components of the dyadic

�
G

add
�

must be
carefully considered. These cases fall outside of the class of
problems considered in this paper.

C. Field Evaluation via Conductor Discretization
For simple conductor geometries, evaluation of the electric

field via (7) can sometimes be performed in closed form
[1], [3], [28]. For more complicated geometries, the current
density, Jexc, is first discretized into the sum of n basis
functions, as in:

Jexc(r) ≈
n�

j=1

Ijφj(r). (12)

In this paper, we use rectangular, piecewise constant basis
functions, φj , defined as the following:

φj =

�
uj/aj r ∈ Uj

0 r /∈ Uj
, (13)

where the support of the function, Uj , is a rectangular paral-
lelepiped pointing in the direction along the unit vector uj ,
with cross-sectional area aj . Physically, each basis function
can be interpreted as a brick-shaped conductor filament, with a
constant current density that flows along its length. The vector
of discretized values, Ib = [I1, I2, . . . , In]T , describes the
currents flowing through each of the n filaments that discretize
Jexc. This vector is also referred to as the branch currents.

The primary advantage of discretization using brick-shaped
filaments is the closed-form solutions to the singular free-
space mutual inductance integral of (21), which can be found
in [29], [30]. Clearly, the disadvantage is the “staircase ef-
fect” when attempting to model smoothly varying current
densities and current redistribution effects. The staircase ef-
fect can be mitigated by refining conductor segments along
their cross-sections [31]. It is often helpful to allocate more
sub-conductors closer to the conductor surface, for example
according to a cosine rule, as shown in Fig. 2.

Once Jexc is discretized, the electric field is obtained by
computing the contributions of each basis function via (7),
and summing the results together. Substituting (12), (13) into
(7) yields:

E(r) = −jωµ0

n�

j=1

Ij

aj

ˆ
Uj

�
G(r, r�)

�
uj dr

�
, (14)

which becomes a matrix-vector product when evaluated
at specific observation points. For example, let Ew =
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(a) (b)

Figure 2: Refinement of a conductor to simulate high-
frequency current redistribution effects and non-orthogonal
geometries. (a) Division of a square cross-section using a
cosine rule. (b) Example model of a circular cross-section.

[E(1)
w , E

(2)
w , . . . , E

(m)
w ]T be the vector of ŵ-directional electric

fields evaluated at the observation points, pi : i ∈ [1,m]. For
each observation point, we have:

E
(i)
w = ŵ ·E(pi) =

n�

j=1

Ψi,jIj , (15)

where element (i, j) of the matrix [Ψ] ∈ Cm×n contains the
field contributions in the ŵ-direction made by the j-th basis
function, towards the i-th observation point:

Ψi,j = ŵ ·

�
−jωµ0

aj

ˆ
Uj

�
G(pi, r�)

�
uj dr

�

�
. (16)

D. Impedance Extraction using the PEEC method

Impedance extraction is an inverse problem that solves
conductor current densities for a specified voltage difference
at the terminals. Impedance extraction can be accomplished
by the Partial Element Equivalent Circuit (PEEC) method
[32], which reformulates the electromagnetic interactions into
a circuit network model.

To begin, a voltage-drop is defined for each brick-shaped
filament, by integrating and averaging the electric field over
each basis function:

Vi = −

ˆ
φi(r) ·E(r) dr =

−1

ai

ˆ
Ui

ui ·E(r) dr. (17)

The resulting vector of discretized values, Vb =
[V1, V2, . . . , Vn]T , is referred to as the branch voltages
vector.

Substituting the electric field superposition integral (14) into
(17) forms a dense impedance matrix, [Z] ∈ Cn×n, that relates
branch currents to branch voltages:

Vb = {[R] + jω[L]} Ib = [Z]Ib, (18)

where [R] is the diagonal branch resistance matrix, and [L] is
the dense self and mutual branch inductance matrix:

Lij = µ0

ˆ
Ui

ui

ai
·

�ˆ
Uj

�
G(r, r�)

� uj

aj
dr�

�
dr, (19)

also referred in literature as the partial inductances matrix [32],
[33]. Substituting (11) as an expansion for (7) into (19) yields:

Lij = L
free
ij + L

add
ij (20)

where

L
free
ij = C

µ0

aiaj

ˆ
Uj

ˆ
Ui

G
free(r, r) dr� dr, (21)

L
add
ij = D

µ0

aiaj

ˆ
Uj

ˆ
Ui

G
add
xx (r, r�) dr� dr, (22)

and the constants C and D are:

C = ui · uj , D = ui,xuj,x + ui,yuj,y.

The singular integral (21) for the free-space mutual in-
ductance L

free
ij has closed-form solutions when the brick-

shaped filaments Ui and Uj are parallel along their edges
in the “Manhattan geometry” [30]. In non-Manhattan cases,
the surface-to-surface procedure described in Appendix A can
be used to evaluate (21) to arbitrary precision. The explicit
evaluation of the additional inductance L

add
ij can be avoided

altogether by the use of the precorrected FFT algorithm, as
discussed later in Section V.

The circuit model described in (18) is incomplete without
the specification of Kirchhoff’s voltage and current laws. As
noted in [34], these constraints can be enforced by introduc-
ing the mesh-analysis matrix, [M ] ∈ Rn×l, which maps n

branches to l closed loops of current (known as meshes) with
order l non-zero entries:

[M ]T Im = Ib, (23)
Vm = [M ]Vb. (24)

Here, Vm, Im ∈ Rl×1 are known as the mesh loop voltage and
current vectors. Substituting (23),(24) into (18) yields:

[M ][Z][M ]T Im = Vm, (25)

where the right-hand side Vm is zero everywhere except those
rows corresponding to terminal voltage excitations. Solving
(25) gives the terminal admittances at the corresponding rows
of Im, concluding the impedance extraction procedure.

For large problems where a direct matrix inversion is pro-
hibitively complex, (25) can be efficiently solved using Krylov
subspace iterative methods such as GMRES [35], coupled with
a suitable preconditioner. Iterative Krylov methods require
many dense matrix-vector products in (18), but these can
be performed in O(n) or O(n log n) complexity using fast
integral methods such as the fast multipole method [16], the
precorrected FFT [17], hierarchical-SVD [18] and adaptive
cross-approximation methods [19]. The interested reader is
referred to [34] for a detailed description of solving (25) using
GMRES and a series of fast matrix vector products.
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E. Matrix-vector product acceleration with the pFFT

The precorrected FFT (pFFT) is a fast method that implic-
itly forms dense matrices, such as [Z] in (18), and [Φ] in
(15), as a summation of sparse components, and evaluates
matrix-vector products with them in O(n log n) complexity.
As a fast method, its asymptotic complexity is higher than
O(n); however, for integral equations evaluated over approx-
imately homogenous volumes, it is known to be considerably
more efficient than competing methods [36]. Furthermore, as
discussed in detail in Section V, pFFT allows an efficient
treatment of a smooth multilayer Green’s function over many
frequencies with very little additional overhead.

The pFFT algorithm is well-known in [17], [36], [37],
and an application-specific summary is provided here for
completeness. Given a dense matrix, [A], the pFFT algorithm
approximates the matrix using a sum and products of sparse
matrices:

[A] = [S] + [I][H][P ], (26)

where [S] represents nearby interactions, and [I][H][P ] rep-
resents distant interactions. More specifically, each matrix in
(26) is a step in the algorithm:

1) Projection matrix [P ]m×n: Represents the integration
over n basis functions φj : j ∈ [1, n] as equivalent
weighted point sources on a regular grid of m points.
The basis function to grid projection is performed either
using a collocation scheme [17], [36] or a polynomial
interpolation scheme [37], [38].

2) Convolution matrix [H]m×m: convolves the grid of
m weighted point sources with the governing Green’s
function using the FFT, to produce potentials evaluated
on the m grid points.

3) Interpolation matrix [I]n×m: Interpolates the m grid
evaluations onto the desired evaluation points or basis
functions, again with either collocation or polynomial
interpolation.

4) Precorrected direct matrix [S]n×n: computes self- and
nearby interactions directly, and corrects for the inaccu-
rate contributions from the grid.

The sparse [S] matrix is computed once per problem and per
Green’s function, but it is none-the-less the most expensive
part of the algorithm. For each neighboring pair of basis
functions with indices i and j, the precorrected direct term
Si,j is written:

Si,j = Ai,j − Ii,:[H]P :,j ,

where Ai,j is the (i, j)-th element of the original dense matrix
[A], representing the direct interaction between the pair, and
Ii,:[H]P :,j is the precorrection, calculated by performing the
projection-convolution-interpolation procedure using the j-th
column of [P ] and the i-th row of [I]. The precorrection
step is necessary because most electromagnetic field Green’s
functions are singular at r = r�, making grid-based projection
and interpolation inaccurate for near-by interactions. Once the
[S] matrix is formed, multiplication operations with it are
inexpensive and add relatively little overhead to each matrix-
vector product operation.

III. THE MULTILAYER GREEN’S FUNCTION

Existing multilayer media Green’s function field solvers
can be grouped into two broad categories based on the
applications. Where the conductor geometries are complicated,
for example in microstrip circuits and VLSI interconnects
applications, the Green’s functions tend to be simple. The
usual practice is to analytically derive and compute the Green’s
function, and to focus efforts on reducing complexity in the
conductors [3], [12], [39], [40]. By contrast, for antennas
and scattering applications, the Green’s functions themselves
contain a great deal of complexity, including resonant and
propagation modes, surface waves, and branch cuts in the
complex domain, and most of the emphasis is placed upon
evaluating the Green’s function to high accuracy using so-
phisticated techniques [13]–[15].

The lossy magnetic multilayer media problem shares char-
acteristics with both classes of problems. On one hand, the
conductors can contain complicated geometric details, such
twisted and interwoven wire patterns, motivating the adap-
tation of fast integral equation techniques. But on the other
hand, the multilayers themselves also tend to be complex.
For example, in the induction heating of iron and steel alloys,
magnetic field penetration into the layered media may cause
orders of magnitude of continuous variation in the linearized
magnetic permeability and conductivity along the z direction
[41].

In this section, we describe a simple procedure to evalu-
ate the multilayer Green’s function numerically, using non-
uniform finite differences in the spatial domain. In addition
to the obvious appeal of simplicity, the finite differences
approach can readily accommodate continuous material vari-
ations, which is a difficult task to accomplish using piecewise
constant analytical techniques. Furthermore, error control is
easily implemented using standard finite differences adaptive
meshing techniques, and convergence is guaranteed due to the
smoothness of the underlying solution. While the approach
cannot be easily extended to the general full-wave problem
due to wave reflections at the outer boundaries [42], [43], we
show in this section that it is efficient and competitive for the
types of layered problems considered within this paper.

A. Quasistatic Added Green’s Function
Under the quasistatic limit, the added Green’s function G

add
xx

is piecewise infinitely differentiable smooth (i.e. piecewise
C

∞). This smoothness property is an important theme for this
paper, because it is the key factor that allows numerical meth-
ods based on Taylor polynomial expansions to be effective,
including the finite differences method described below, and
the polynomial projection operation in the pFFT in Section
V. In the following subsection, we provide a brief sketch to
illustrate the smoothness property, and the implied existence
and uniqueness of the solution.

Following the naming conventions illustrated in Fig. 3,
let the open domain of free-space containing the conductors
be denoted as Ω0 ⊂ R3, and consider solving for the x̂x̂
component of

�
G
�

in (1). This yields Laplace’s equation:

∇
2
Gxx = −δ(r), r ∈ Ω0.
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ΩM σM , µM

...
Ω1 σ1, µ1

Ω0 σ0 = 0, µ0

Ω−1 σ−1, µ−1

...
Ω−L σ−L, µ−L

...

z = ζ0

z = ζ−1

z = ζ1

z = ζ2

...

z

x
y

Figure 3: Notations to describe a general multilayer geometry.

Consequently, the solution Gxx is harmonic within the region
Ω0. Since G

free is harmonic in R3 by definition, G
add
xx =

Gxx −G
free must also be harmonic within Ω0. Additionally,

with the source singularity canceled out, Gadd
xx is also smooth

at its origin. Due to the strong maximum principle for har-
monic functions, Gadd

xx must attain its maximum and minimum
along the boundaries ∂Ω0.

Outside the source layer Ω0, Gadd
xx remains smooth within

each domain. Let Ωi denote the domain of the i-th piecewise
layer of the multilayer media. Within each Ωi, equation (1)
can be written in a linear differential operator form:

Lu(r) =

�
∇

2 + a(r)
∂

∂z
− b(r)

�
u(r) = 0, r ∈ Ωi,

where u(r) represents the homogenous solution, and corre-
sponds to the value of G

add
xx within that domain. The linear

operator L is a perturbed version of the Laplacian, and is
therefore elliptic. If the material properties µ and σ in each
layer are bounded and analytic, then the coefficients a and b

are also bounded and analytic. In this case, the regularity of
elliptic operators guarantees that the solution, u, will also be
analytic and infinitely differentiable within Ωi [44, p.178].

To connect the solutions in each domain, we note that the
global solution must be Lipschitz continuous, since the the
boundary conditions (5)-(6) are equivalent to a description
of local Lipschitz continuity for finite values of µ, and
the solution is infinitely differentiable elsewhere. Then, by
applying the Picard–Lindelöf theorem along the z direction
for each fixed ρ (see [45], [46]), there exists a unique solution
to the boundary value problem, and that solution is bounded
everywhere except at the origin where the excitation may be
singular.

B. Finite Differences Evaluation of the Green’s function
Consider the geometry shown in Fig. 3. At the center of

the geometry is the layer Ω0 containing the point source, with
conductivity σ0 = 0 and permeability µ0. Above and below
Ω0 are M and L layers of magnetic conductive materials, each
containing its own conductivity σk and permeability µk that
may be variable along z. For each each layer Ωk, label the
height of the boundary directly below it as z = ζk.

The transverse Green’s function Gxx(r, r�) is obtained by
solving (3) with an x̂-directed delta excitation located at a
height of z

�, for the electric field in the x̂-direction Ex(r).
We begin by setting Jexc to the following:

−jωµ0J
exc
x = δ(x)δ(y)δ(z − z

�),

J
exc
y = J

exc
z = 0. (27)

Substituting (27) into (3) yields one governing equation for
each layer of material:

∇
2
Ex = −δ(x)δ(y)δ(z − z

�) ζ0 ≤ z ≤ ζ1 (28)
�
∇

2 +
1

µ2

∂µ

∂z

∂

∂z
− jωµσ

�
Ex = 0 otherwise (29)

Equations (28) and (29) are cylindrically symmetric, and
the Laplacian operator can be expanded to its cylindrically
symmetric form:

∇
2
≡

1

ρ

∂

∂ρ
+

∂
2

∂ρ2
+

∂
2

∂z2
. (30)

Let the x̂-directed electric field within each region Ωk be
labeled with superscripts as E

(k)
x ≡ {Ex(r) : r ∈ Ωk}. Using

this notation, the interface boundary between each neighboring
layer pairs E

(k)
x and E

(k−1)
x are written:

E
(k)
x − E

(k−1)
x = 0 z = ζk, (31)

1

µk

∂

∂z
E

(k)
x −

1

µk−1

∂

∂z
E

(k−1)
x = 0 z = ζk, (32)

corresponding respectively to the continuity of the tangential
electric fields x̂Ex and tangential magnetic fields ŷHy = (∇×

x̂Ex)/µ.
The singularity on the right-hand side of (28) is a disconti-

nuity that poses an issue for finite differences. However by the
field equivalence principle, it can be eliminated and replaced
with surface magnetic and electric currents at the boundaries
of Ω0 [11]. First, we note that (28) is Laplace’s equation
within the source layer Ω0, and the source contribution is equal
to G

free(r, r�), defined earlier in (9). Subtracting the source
contribution leaves the homogenous equation in that layer:

∇
2
Ehom = 0 ζ0 ≤ z ≤ ζ1, (33)

where,
Ehom = E

(0)
x −G

free(r, r�). (34)

Note that Ehom corresponds to the added Green’s function
component Gadd

xx within the layer Ω0.
The equivalent magnetic and electric surface currents to re-

place the original point excitation are placed at the boundaries
of layer Ω0. Their strengths can be computed by substituting
(34) for Ehom back into the regular boundary conditions
(31),(32). At the boundary above Ω0 we have:

E
(1)
x − Ehom = G

free
z = ζ1, (35)

µ0

µ1

∂

∂z
E

(1)
x −

∂

∂z
Ehom =

∂

∂z
G

free
z = ζ1, (36)
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and at the boundary below Ω0:

E
(−1)
x − Ehom = G

free
z = ζ0, (37)

µ0

µ−1

∂

∂z
E

(−1)
x −

∂

∂z
Ehom =

∂

∂z
G

free
z = ζ0, (38)

where G
free and ∂G

free
/∂z expand to the following form in

cylindrical coordinates:

G
free =

1

4π [ρ2 + (z − z�)2]
1/2

, (39)

∂

∂z
G

free =
−(z − z

�)

4π [ρ2 + (z − z�)2]
3/2

. (40)

Given a fixed value of z
�, equations (31)-(38) com-

bine to form a two-dimensional boundary value problem
for Ehom(ρ, z) ≡ G

add
xx (ρ, z; z�) in region Ω0, and for

E
(k)
x (ρ, z) ≡ Gxx(ρ, z; z�) outside of Ω0. The homogenous

equations, (33) and (29), govern the domains, and the bound-
ary conditions, (31) and (32), govern all regular interfaces. The
impulse excitation of (28) is replaced by boundary magnetic
and electric currents, (35)-(38), located at the excited interfaces
at z = ζ1 and z = ζ0. These surface currents are smooth and
non-singular, so long as the source point r� is not held exactly
on top of the surfaces.

To solve these equations, the spatial derivative operators
(30) can be discretized using non-uniform finite differences
techniques, the details of which are available in many ref-
erence texts [47], [48]. In practice, the authors have found
this approach to be competitive in problems where only 3-
4 significant figures of accuracy are desired. To illustrate,
the degrees of freedom needed to achieve ∼ 0.1% accuracy
is around 100,000 for the cases considered in Sections VI
and VII. The associated linear systems are directly inverted
in MATLAB on a 2.5 GHz dual-core CPU in less than 10
seconds.

If more significant figures are desired, then the Hankel
transform can be used to transform the spatial radial direction
ρ to its spectral domain. The difficulties associated with
Sommerfeld integrals are reintroduced with this approach, and
the reader is referred to [42], [43] for more details.

IV. DECOUPLING THE Z-DIRECTIONAL DEPENDENCE

When the multilayer Green’s function is computed numeri-
cally using the finite differences method described above, only
one “slice” of G

add
xx is computed at a time, for all values of

ρ and z, but a single fixed value of z
�. To avoid repeating

the finite differences solve for a range of z
�, this section

describes a method that performs the following method-of-
images decomposition:

G
add
xx (ρ, z, z�) = T (ρ, z − z

�) +H(ρ, z + z
�). (41)

This linear algebra method, named the Toeplitz-plus-Hankel
decomposition due to the underlying matrix structure, recon-
structs the least-squares values of T and H from the values
of G

add
xx evaluated at just four carefully chosen source points

z
�. The resultant components can exactly recreate the values

of G
add
xx for all values of z

�, despite sampling it at only four
distinct slices.

Furthermore, it is well-known that multilayer Green’s func-
tions are not translation-invariant along the ẑ-direction, and
cannot be directly convolved along this direction using the
FFT. Instead, the two components T and H can be separately
convolved using the FFT. The T component is treated like a
regular three-dimensional convolution, and the H component
is treated as a convolution along x̂ and ŷ, and a cross-
correlation along ẑ. In fact, previous authors have found that
the two-component convolution above incurs relatively little
overhead when compared to the traditional single-component
convolution for translation-invariant Green’s functions [12],
[36].

A. Toeplitz-plus-Hankel Decomposition
Consider discretizing (41) to a matrix [Ψ] for a uniformly

sampled zi : i ∈ [1, N ] and a fixed value ρ = ρ0:

Ψi,j = G
add
xx (ρ = ρ0, z = zi, z

� = zj). (42)

If the vectors t, h ∈ C2N−1×1 are defined using the functions
T and H from (41):

ti−j = T (ρ0, zi − zj), hi+j = H(ρ0, zi + zj),

then all N
2 elements of [Ψ] can be expressed in terms of t

and h, in a Toeplitz-plus-Hankel structure:

Ψi,j = ti−j + hi+j . (43)

Equation (43) can be expressed as a system of linear
equations:

[B]





t1−n
...
t0
...

tn−1




+ [C]





h2

h3
...

h2n−1

h2n




=





Ψ1,1

Ψ2,1
...

Ψn−1,n

Ψn,n





[B]t+ [C]h = ψ, (44)

[A]

�
t

h

�
= ψ. (45)

where the vector ψ ∈ CN2×1 is the column vectorization of
the matrix [Ψ]:

g = vec([Ψ]).

The matrices [B], [C] ∈ RN2×2N−1 are sparse coefficient
matrices of ones and zeros, and the matrix [A] ∈ RN2×4N−2

is the horizontal concatenation of [B] and [C]. Consider
partitioning [A] into N blocks of N rows each, and referring
to each block using subscripts:

A =





A1

A2
...

AN




,

then observing (43), each i-th block of A can be shown to
have the following sparsity pattern for an ascending ordering
of t and h:

Ai =
�
0N×N−i IN 0N×2i−2 IN 0N×i−1

�
. (46)
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Matrix [A] is greatly overdetermined, possessing N
2 equa-

tions for just 4N−2 unknowns. Assuming that [Ψ] does indeed
contain a Toeplitz-plus-Hankel structure, then [A] is reducible
to just four of its blocks while preserving the integrity of
the decomposition. Let the reduced form of [A] formed by
isolating blocks a, b, c, d be denoted [D]:





Aa

Ab

Ac

Ad





�
t

h

�
= [D]

�
t

h

�
= ψ

∗
, (47)

where ψ
∗ is the column vectorization of the a-th, b-th, c-th

and d-th columns of matrix [Ψ]:

ψ
∗ = vec(

�
Ψ:,a Ψ:,b Ψ:,c Ψ:,d

�
). (48)

Solving the matrix equation (47) completes the Toeplitz-plus-
Hankel decomposition.

The appropriate choice for a, b, c, d can be readily verified
by forming the full [A] matrix, selecting specific blocks to
form [D], and checking to see that both matrices maintain the
same rank. For even values of N , the following choices have
been experimentally found to be optimal:

a = 1, b = N, (49)

c = round(1.6 logN), d = c+
N

2
, (50)

where log is the natural logarithm. A formal proof of these
results involves an in-depth analysis into the sparsity structure
of [A] using elements of spectral graph theory, and can be
found in a separate upcoming paper.

V. FAST FREQUENCY SWEEPS

As described in Section II, fast integral methods (e.g. [16]–
[19]) implicitly form the coupling matrix–[Φ] in (15) and [Z]
in (18)–in a compressed structure, and perform fast matrix-
vector products directly with the compressed structure. The
initial setup is geometry dependent and Green’s function
dependent, and it is always time-consuming, taking several
tens to thousands of times the cost of each subsequent matrix-
vector product. Where the Green’s function is fixed for all
frequencies, e.g. in free-space impedance extraction, the initial
setup is performed just once for each conductor geometry.
However, when extended to multilayer Green’s functions,
repeating the setup at each new frequency adds a considerable
computational overhead.

Instead, we show in this section that the smoothness of
the quasistatic added Green’s function G

add
xx in Ω0 (as pre-

viously shown in Section III) allows the initial setup to be
performed just once per geometry, regardless of its frequency-
dependence. This completely eliminates the overhead associ-
ated with repeating the setup at each frequency, resulting in a
considerable speedup.

Consider the convolution and precorrection matrices [H]
and [S] in the pFFT equation (26), which are both frequency-
dependent. Let this frequency-dependence be denoted with the
function argument f :

[A(f)] = [S(f)] + [I][H(f)][P ], (51)

Following (8), the coupling matrix [A] can be decomposed
according to contributions due to G

free and those due to G
add
xx :

[A(f)] = [Afree] + [Aadd(f)]. (52)

This leads to similar decomposition for the frequency depen-
dent matrices [S(f)] and [H(f)]:

[S(f)] = [Sfree] + [Sadd(f)] (53)
[H(f)] = [Hfree] + [Hadd(f)]. (54)

Note that only the added components of each matrix is
frequency-dependent.

In Section III, it was shown that a finite differences dis-
cretization of Gadd

xx –based upon approximating the underlying
solution with a truncated Taylor polynomial series [48]–will
converge to arbitrary accuracy as the grid size is refined. We
emphasize here that the projection and interpolation operations
in our FFT are also based upon approximating the underlying
solution with a truncated Taylor polynomial series (see [37]
for a more thorough description of these operations). Conse-
quently, we expect the pFFT method without precorrection to
also become increasingly accurate as the FFT grid is refined.
Substituting into (51) and (52), this observation can be written
as a limit statement, for an FFT grid spacing of h:

lim
h→0

[I][Hadd(f)][P ] = [Aadd(f)], (55)

noting the absence of the precorrection matrix [Sadd(f)].
Equivalently, the free-space, frequency-independent precor-

rection matrix [Sfree] becomes a better approximation for the
overall precorrection matrix [S] with a refinement of the grid:

lim
h→0

[A(f)] = [Sfree] + [I][H(f)][P ], (56)

where unlike before in (51), the [Sfree(f)] term has been
dropped from the equation.

Equation (56) summarizes the fast version of pFFT for
quasistatic multilayer Green’s functions. For some well-chosen
value of h, the frequency-independent matrix [Sfree] becomes
an accurate approximation for the frequency-dependent matrix
[S(f)]. At each new frequency, the projection-convolution-
interpolation part of pFFT is performed using the full,
frequency-dependent convolution matrix [H(f)], but the pre-
correction is performed using the frequency-independent
[Sfree].

While this may appear to be a trivial adaptation of the full
pFFT method, it has significant ramifications for the speed of
frequency sweeps. The most time-consuming step of pFFT–
the formation of the precorrection matrix–is performed just
once for all frequencies, rather than repeated at each frequency.
The need to form [Sadd(f)] is eliminated altogether, and this
provides an advantage in itself, because each of its elements is
the end-result of an expensive six-dimensional integral, shown
in (22).

To control errors to some specified limit, the exact value of
grid refinement h for (56) may be numerically estimated by
explicitly forming [Sadd(f)] to within a relative error tolerance
�:

�[Sadd(f)]� ≤ ��[Sfree]�, (57)
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1: procedure EXTRACTIMP(geometries, frequencies)
2: %Begin pFFT setup.
3: [P ], [I] ← Project conductors onto a uniform grid.
4: [Sfree] ← Precorrect Gfree(ρ, z, z�) � slow!
5: [Sfree] ← Compute direct interactions � slow!
6: for each frequency do
7: %Set up convolution components for each
8: %frequency w/o precorrecting again.
9: G

add ← Load added Green’s function.
10: G ← G

add +G
free

� add free-space component
11: %Begin GMRES interations
12: V = [1, 0, 0....] � Objective is 1 volt across terminals
13: while Ṽ not converged to V do
14: Guess new current density x using GMRES
15: %Perform matrix-vector product
16: xp = [P ]x � Project
17: E ← CONVOLVE(xp;G)
18: %E is the E-field evaluated on a grid
19: Ṽ = [I]E + [Sfree]x � Interpolate and Precorrect
20: end while
21: Z(f) = 1/I � Compute terminal impedance
22: end for
23: end procedure

Figure 4: The full impedance extraction procedure in pseu-
docode. Highlighted are the aspects of the algorithm acceler-
ated by pFFT and by the G

add decomposition.

under a preferred norm.
A summary of a frequency-sweep impedance extraction

routine based upon the fast frequency sweep described above
is shown in Fig. 4 in pseudocode. Experimental confirmation
of the fast pFFT method is presented below in Table II.

VI. COMPARISON TO ANALYTICAL MODELS

A wealth of analytical models have been previously derived
for the lossy-magnetic coil problem, many of which are
exact under specific conditions and for particular conductor
geometries. In this section we demonstrate the ability of our
numerical model to converge towards a few of the most widely
used exact solutions in inductor design, when their relevant
conditions are reproduced.

A. Inductance of a single turn in free-space
The exact self-inductance for a circular turn of wire in free-

space can be derived when the cross-section of the wire is
rectangular or square and the current density is assumed to be
constant [29], [49]. Consider a single circular turn of radius
0.1m, with a square cross-section of 1mm in width and height.
Using equations (91) and (92) from [29, pp.95], the exact self-
inductance of this single turn evaluates to 689.859nH, with 4-5
s.f. of accuracy.

The circular turn is numerically modeled as an NL-sided
polygon, with a single piecewise-constant rectangular paral-
lelepiped basis function as its cross-section. The convergence
of the self-inductance with increasing NL are plotted in Fig.
5, computed using the method described in this paper. Results
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Figure 5: Convergence of free-space inductance for a single
turn against closed-from solution from Grover [29]. The
numerical results are generated using an NL-sided polygon
to approximate the ideal circle. (a) Inductances, (b) relative
errors with increasing discretization.

confirm the ability of our method to accurately compute
the self-inductance of a circular turn modeled using linear
filaments, and suggest that a polygon with more than 200 sides
is, within 5 significant figures, an accurate representation of a
circle.

B. Skin-effect Resistance of a single turn in free-space

For an isolated wire of circular cross-section, the exact
frequency-dependent ratio of its a.c. resistance to its d.c.
resistance is known in closed form, derived by solving the
cylindrically-symmetric diffusion equation using Kelvin func-
tions [6], [50]. In this subsection, we again consider a single
turn of 0.1m radius, but this time with a circular cross-section
of 1 mm in diameter. The turn is approximated as a 100-
sided regular polygon, and the cross-section is modeled to be
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circular using the techniques previously shown in Fig. 2. The
geometry yields exact a.c.-d.c. ratios of 1.006790 at 10 kHz,
1.449801 at 100 kHz, and 4.045194 at 1 MHz.

Figure 6 shows the convergence of the simulated frequency-
dependent resistance ratio with increasing discretization of the
conductor cross-section. At the coarsest discretization value
of N = 1, the wire cross-section contains only a single
piecewise constant filament of constant current density, and
it is consequently unable to capture any a.c. resistance effects.
However, as the cross-section is divided into more piecewise
constant filaments, the resistance ratios quickly converge to an-
alytical values. These results suggest that skin-effect prediction
errors are heavily dominated by the ability of the piecewise
constant basis functions to capture the non-uniform current
density distribution. These results agree with previous attempts
to model the skin-effect using PEEC, although the ability to
accommodate for far more filaments have resulted in more
accurate predictions [31].

C. Added resistance and inductance of circular filaments

When a conductor, placed over or in between a multilayer
media structure, is assumed to have a constant and uniform
current density, its terminal impedance can be decoupled into
four independent components:

Zterm = (R0 +∆R) + jω(L0 +∆L)

where R0 and L0 are the series resistance and inductance of
the coil in free-space and ∆R and ∆L are the added resistance
and inductance caused by the presence of the multilayer media.
If the conductor can be approximated as an interconnected set
of circular, concentric, zero-volume filaments, then the ∆R

and ∆L portion of its terminal impedance can be written in
closed-form in the Hankel spectral domain, and inverted to
the spatial domain with a Sommerfeld integral [1], [20], [28],
[51].

Consider the 28-turn coil experimentally verified below
in Section VII, modeled as 28 concentric circular turns,
approximated with thin linear filaments. The turns are set to
be physically isolated from each other, but are numerically
modeled as being “in series” during the impedance extraction.
The cross-section of each turn is set to be a single piecewise-
constant filament of only 10µm width and height, in order
to approximate the ideal zero-volume filament. Like Section
VII, we place the coil below a copper plate of 1/8th inch
thickness. The analytical benchmark for ∆R and ∆L is taken
from equations (13)-(15) of [28], and evaluated to machine
precision using adaptive quadrature.

Figure 7 shows the convergence of the numerical method
to the analytical benchmark with increasing fineness of the
discretization. The Green’s function and the pFFT algorithm
are both tuned to 3-4 s.f. of accuracy. Results show conver-
gence to this specified accuracy, accomplished by conforming
to the necessary assumptions for the analytical derivations: a
constant current density, a thin filament current, and perfectly
circular turns.
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Figure 6: Convergence of skin-effect resistance for a single iso-
lated turn against closed-from solution from McLachlan [50].
The cross-section is progressively refined with more filaments,
each of constant current density. (a) A.c.-d.c. resistance ratios
(b) relative errors with increasing discretization.

VII. EXPERIMENTAL VERIFICATION OF A LITZ WIRE COIL

The results above suggest that the numerical method can
replicate the predictions made by analytical models given the
same inputs and assumptions. Extending this result, we aim to
demonstrate in this section that it can also make more accurate
predictions, by working with a more faithful model of the
system and making less assumptions.

To achieve this, we perform a series of experiments on a
28-turn, 16-strand litz wire induction heating coil, shown in
Fig. 8. Two experimental cases are considered:

• The coil alone (“free-space case”),
• The coil placed underneath a flat 1/8 inch copper plate

(“plate case”).
These cases are specially chosen as accuracy benchmarks,
because they can be exactly described at quasistatic frequen-
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Figure 7: Convergence to the analytical ∆L/∆R models
with refinement of the number of filaments N in numerical
model. (a) Convergence of ∆L for 3 chosen frequencies. (b)
Convergence of the maximum relative error (∆L and ∆R)
over 30 frequencies for a solid conductor numerical model
and a zero-volume filament numerical model.

cies with the linear formulation presented in Section II. In
other words, given a perfectly faithful model of the coil and
plate geometries, prediction accuracy is limited only by the
ability to solve the governing equations. Whereas for non-
linear materials like steels and irons, a linear formulation is
only approximate, and the prediction accuracy would be bound
by the linearization process, i.e. the choice of µr = µ

�
r − jµ

��
r .

In the following section, the impedance magnitude and
phase measurements are made using an Agilent 4192A low-
frequency impedance analyzer. Predictions of the coil series
inductance L, resistance R, and quality factor Q = ωL/R are
computed using the numerical method described above, and
also using popular analytical formulas derived specifically for
a circular coil in proximity to multilayered media.

A. Experimental setup and model description
The exact litz wire used in the experimental coil has a

long and thin, tape-like cross-section, containing 16 strands
of annealed copper wire with σ = 5.8× 107 S/m. The strands
are wound in two layers of 8, in alternating angles of incline
as shown in Fig. 9. The distance between the center of the
first strand and the ninth strand is 23.72 ± 0.05 mm, at an
angle of 17.5◦. The height of the tape is 7.49±0.03 mm, and
each strand of wire has a circular cross-section diameter of
0.80± 0.02 mm and negligible insulation thickness.

The turns of the coil are wound in three separate sections:
• 7 inner turns, tightly wound with outermost radius at

49.2± 0.4 mm.
• 9 middle turns, tightly wound with outermost radius at

82.6± 0.4 mm.
• 12 outer turns, tightly wound with outermost radius at

114.3± 0.4 mm.
The copper plate used comprises of 99.9% annealed copper,
of 3.175± 0.013 mm thickness, µ = µ0 and σ = 5.80× 107

S/m, and is placed 10.62± 0.02 mm over the top of the coil.
The numerical model for the coil was constructed in MAT-

LAB, discretized it into 909,504 elements. Each element is a
brick-shaped filament of 1mm in length and 0.1mm in width
and height. The 16 strands are each modeled as a round
wire, refined into 25 rectangular sub-filaments along its cross-
section, according to the cosine rule previously illustrated in
Fig. 2. It is worth emphasizing that the element count should
not be directly compared with the finite element method.
An equivalent finite element model for this system would
discretize not only the conductor, but also the surrounding
multilayered media and free-space, and increasing the element
count by a factor of 20-200 [23]–[25].

Finally, the circular coil is well-known to yield accurate,
analytical solutions for the multilayer media problem [1], [52].
As a final comparison, we make predictions of the series
inductances using formulas from literature. The free-space
inductance L0 is computed using closed-form expressions in
[29], [49], and the free-space series resistance R0 of a litz
wire coil wound with round wires is taken from proximity
effect expressions derived by [6], [7]. Here, the fill-factor of
the wire is taken to be the cross-sectional area of 16 strands
of wire, divided by the cross-sectional area of the litz wire
bundle: 16 × π(0.8mm/2)2/(7.5mm × 1.6mm) = 0.67. The
added ∆R and ∆L terms are computed using expressions from
[28].

B. Series inductance predictions
Before comparisons can be made, we note that a practical

induction heating coil experiences parallel resonance due
to its internal winding-to-winding capacitances. Experimen-
tal evidence suggests that this capacitance is approximately
frequency-independent [2], [3]. By measuring the resonance
frequencies to 2.636 MHz and 3.855 MHz for the free-space
and plate cases respectively, we estimate the parallel terminal
capacitance for the coil to be 30± 3 pF.

The raw terminal impedance measurements are compen-
sated assuming 30 pF of capacitance, and compared to predic-
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(a)

(b)

Figure 8: The example coil used in this paper: (a) actual coil;
(b) discretized model.

tions made by the numerical model in Table I. The frequency-
scaled, imaginary component of each terminal impedance
(i.e. the “inductance” in an assumed series RL network) is
plotted in Fig. 10. Results confirm the presence of an artifact
resonant peak in the raw measurement, which is removed when
the capacitive effects are compensated. The accuracy of the
numerical predictions improves accordingly.

Figure 11 plots these same results compared against pre-
dictions made by the analytical models, zoomed and scaled to
the relevant ranges. Results show that both methods are able
to accurately predict the inductance to 3 significant figures at
lower frequencies, but only the numerical method is able to
maintain its accuracy at high frequencies. The presence of the
plate causes eddy currents to be induced in the plate which
in turn re-induces eddy currents within the wire bundle. This
effect is fully captured in the numerical model.

C. Series resistance and quality factor predictions
Figure 12 compares the measured series resistance of the

coil against predictions made by the numerical model and
by the analytical model, and Fig. 13 plots the equivalent

(a)

(b)

Figure 9: Detailed image of litz pattern: (a) actual coil; (b)
discretized model. Note that each strand is actually modeled
with a circular cross-section. They are shown with square
cross-sections here for clarity.

Table I: Capacitance compensated terminal impedance mag-
nitude and phase measurements, compared to numerically
simulated values.

Coil in free-space
Raw Meas. Cap. Comp. Simulated

Freq. |Z| arg(Z) |Z| arg(Z) |Z| arg(Z)
1 kHz 0.1341 73.09◦ 0.1341 73.09◦ 0.1349 72.40◦

10 kHz 1.2843 86.38◦ 1.2843 86.38◦ 1.2879 86.24◦
100 kHz 12.668 81.05◦ 12.648 81.06◦ 12.648 82.98◦

1 MHz 142.75 83.44◦ 122.01 84.38◦ 123.24 86.08◦

Coil below plate
Raw Meas. Cap. Comp. Simulated

Freq. |Z| arg(Z) |Z| arg(Z) |Z| arg(Z)
1 kHz 0.0842 45.52◦ 0.0842 45.52◦ 0.0829 46.71◦

10 kHz 0.5980 76.56◦ 0.5978 76.65◦ 0.6036 76.13◦
100 kHz 5.7689 71.08◦ 5.7632 71.14◦ 5.7787 71.16◦

1 MHz 55.872 80.93◦ 52.382 81.39◦ 52.530 79.68◦

comparison in the quality factor. The analytical fit is shown
to be good until around 20 kHz, when current redistribution
effects begin to dominate. Due to the complicated geometry of
the litz winding, these loss effects are not well approximated
by the analytical model beyond the initial knee frequency,
and the maximum quality factors predicted are off by more
than 10%. The numerical model is very accurate over its
range of applicable frequencies, but begins to deviate from
measurements at around 100 kHz. At this frequency, the skin
depth of copper is 206.3 µm, around the same size as the
cross-sectional width of the widest filament. Accuracy begins
to deteriorate because the filaments become too large to fully
capture the current density redistribution under the skin and
proximity effects.



13

0 

20 

40 

60 

80 

100 

120 

140 

160 

1E+3 1E+4 1E+5 1E+6 

In
du

ct
an

ce
 [u

H
] 

Frequency [Hz] 

Raw meas (freespace) 
L meas. (freespace) 
L calc (freespace) 

Figure 10: Coil inductance comparison of the frequency-
scaled imaginary component of the terminal impedance (“Raw
meas”) with inductances measured assuming 30 pF of parallel
capacitance (“L meas.”), and inductances computed using the
numerical method (“L calc”).

The figures also show the predictions in the plate case. It
is worth noting here that predictions made by the analytical
model are considerably worse because it does not take into
account the fact that some of the skin effect is actually
canceled out by the presence of the plate, and that the series
resistance measured is lower at very high frequencies than in
the free-space case.

D. Predictions made without litz wire transpositions
To show that a full model of the litz wire transpositions

is not superfluous for accurate predictions of the terminal
impedance, we repeat the 11mm copper plate numerical sim-
ulations with a coil wound using a single solid conductor,
in the shape of a long tape. We emphasize that this model
approximates the litz wire as if it were untangled into a set of
parallel strands, thereby eliminating its transposition patterns.
The formulation and numerical method remain identical. In
order to ensure that numerical discretization error does not
artificially erode the accuracy of these simulations, the coil was
discretized into 1,000,000 elements, 10,000 along its length
and 100 along its solid cross section according a cosine rule.

Results for the tape, shown in Fig. 14, fit the measurements
noticeably worse than the full litz wire model. Note that many
characteristics of the tape conductor observed here have been
previously described in literature, particularly the fact that
the resistance of a solid conductor is actually lower than an
equivalent litz wire at very high frequencies [6], [7].

E. Electric and magnetic fields
The electric field produced by the conductor is computed

on a regular grid as a by-product of the pFFT algorithm.
These fields can be separately extracted, and processed to
compute the magnetic field, at no additional cost to the overall
algorithm.
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Figure 11: Coil inductance comparison, computed against
measurements (b) in free-space and (c) with a plate over
the coil. The measured inductance was extracted from raw
measurements assuming 30 pF of parallel capacitance. Error
bars show ±0.4µH of measurement uncertainty, increasing to
±1µH at higher frequencies due to uncertainty in the parallel
capacitance.

VIII. SPEED COMPARISON

Table II shows the computational time breakdown for the
30-point frequency sweep of the coil below the copper plate,
using pFFT implemented in MATLAB, controlled to 0.1%
relative error and run on a Intel Xenon 3.10 GHz 16-core
workstation with 132Gb of RAM. The conductor geometry is
discretized into 909,504 elements. We note that the simulation
has also been performed on a 2.5 GHz dual-core laptop CPU
in a similar amount of time to those shown, by using 10 times
less elements and working to around 5% relative error.

The “fast pFFT” method is the procedure described in Sec-
tion V, which avoids explicitly computing and precorrecting
nearby interactions governed by G

add
xx . The grid was set up so
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Figure 12: Coil series resistance predictions against measure-
ments (after compensating for 30 pF of parallel capacitance)
in the (a) free-space case and (b) the plate case. Error bars
show ±10% of measurement uncertainty.

that each cell is larger than the smallest conductor filament in
the model, and resulted in 258 × 106 pairs of nearby inter-
actions. These nearby interactions took a significant portion
of time to compute, but was only performed once for the
conductor geometry.

The “orig. pFFT” column illustrates the original pFFT
implementation for ground-plane problems, as found in [12],
[17]. Here, the nearby G

add
xx interactions are explicitly com-

puted and precorrected at each frequency, taking up a bulk por-
tion of the total computation time. The integration is performed
using a six degree sparse grid Kronrod-Patterson quadrature
with 257 quadrature nodes per interaction, to result in around
3 significant figures of accuracy [53]. We avoided the standard
practice of expanding G

add
xx into a summation of Gfree terms

(such as implemented by [12]), because summing multiple
interactions under Gfree would be even more time consuming
to compute. Despite the efficiency of the quadrature scheme,
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Figure 13: Coil quality factor predictions against measure-
ments (after compensating for 30 pF of parallel capacitance)
in the (a) free-space case and (b) the plate case. Error bars
show ±5% of measurement uncertainty

the need to explicitly compute G
add
xx interactions at each

frequency make the original pFFT algorithm more than five
times slower than the fast pFFT method.

IX. CONCLUSIONS

Throughout this paper, a fast numerical method is pre-
sented for the simulation of a litz wire coil in proximity
to a multilayer lossy-magnetic structure. By noting the fact
that the governing Green’s function is smooth for the given
problem, we make full use of fast numerical methods based on
polynomial expansions. We present a simple finite differences
method to compute the Green’s function, and show that the
efficacy of a finite difference approximation leads directly to
a fast frequency-sweep version of the precorrected FFT. This
version of the pFFT avoids repeating the setup phase at each
frequency, and is consequently over five times faster than the
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Figure 14: Simulating the litz wire with a solid conductor
“tape” instead of a full litz structure, results in inductance and
resistances that fit the measured values noticeably worse than
the full litz-wire model described earlier. Results shown are
for the plate case.

original pFFT method. Finally, we describe a numerical de-
composition of the multilayer Green’s function into a Toeplitz-
plus-Hankel structure, which allows convolutions with it to
be performed using the FFT. Experimental verifications are
made for a 16-strand litz wire coil, realistically modeled down
to each individual strand. Results are obtained in 2-3 hours
on a workstation computer, showing an excellent agreement
to measurements, including the subtle geometry-dependent
characteristics not fully captured by less detailed models.

The source code for the work presented can be found online
at http://web.mit.edu/ryz/www, or by emailing the correspond-
ing author at ryz@mit.edu.

X. ACKNOWLEDGMENTS

The authors are grateful to an anonymous reviewer for the
detailed and constructive comments, and to the MIT Energy

Table II: Computation time breakdown for the frequency
sweep of a 28-turn coil, discretized to 909,504 elements, over
30 frequencies, controlled to 0.1% relative error.

Fast pFFT Orig. pFFT
per f total per f total

Setup Geometry
Grid size 256× 256× 32 256× 256× 32

Projection1 - 9.7 s - (9.7 s)
Nearby Interactions

Num. direct terms 258× 106 258× 106

Precorrection2 - 209 s 210 s (6309 s)
Direct Gfree terms3 - 1545 s - (1545 s)
Direct Gadd terms4 - - 1341 s (40248 s)
Extract Impedance
Setup Gadd kernel5 4.33 s 130 s 4.21 s (130 s)

GMRES iterations 41× 1237× (41×) (1237×)
Time per iteration 5.8 s 5.8 s 5.8 s (5.8 s)

Total time to solve 240 s 7206 s (240 s) (7206 s)
Total Time 245 s 9091 s 1796 s 49339 s

1 Line 3 of Fig. 4.
2 Line 4 of Fig. 4. Each precorrection takes 0.5µs.
3 Line 5 of Fig. 4. Each free-space interaction takes 0.2-40µs to compute,

depending upon the orientation of the filaments.
4 Lines 8-9 of Fig. 4. Each added interaction takes 5.2µs to compute, from

257 quadrature points per interaction, and 0.02µs per quadrature point
evaluation.

5 Lines 8-9 of Fig. 4.
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APPENDIX

A. Mutual inductances for non-Manhattan filament interac-
tions

Volume-to-volume integrals of the free-space Green’s func-
tion (9) is used to compute the mutual inductance term [33].
For each interacting pair of current filaments φ1 and φ2, the
following integral is performed:

M =

ˆ
φ1

ˆ
φ2

R
−1 dr dr� (58)

where the spherical radius R is given:

R = �r− r��.

The integration kernel becomes singular or close-to-singular
when φ1 and φ2 are close or even overlapping. If φ1 and φ2

are brick-shaped and have their edges parallel to each other in
the “Manhattan geometry”, then closed-form solutions to (58)
can be used to compute the mutual inductance [30].

When φ1 and φ2 are brick-shaped but non-Manhattan, e.g. at
a slight angle to each other, then closed-form solutions to (58)
do not exist. Instead, two of the six integral dimensions can be
implicitly eliminated with a surface-to-surface transformation.
As shown by [54], the 1/R kernel can be written as the
divergence of a gradient:

R
−1 =

−1

2
∇

�
· ∇R, (59)

and by the divergence theorem, (59) reduces (58) to a set
of surface integrals with the spherical radius R itself as the
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kernel:
M =

−n̂ · n̂�

2

˛
∂φ1

˛
∂φ2

R dS dS�
, (60)

where n̂ and n̂� are the exterior normal vectors to the field
surface dS and the source surface dS� respectively. For
arbitrarily oriented cuboids basis functions, the above integral
results in 36 surface-to-surface interactions:

M =
6�

i=1

6�

j=1

−n̂ · n̂�

2

ˆ
�i

ˆ
��

j

R dS dS�
, (61)

where �1 · · ·�6 and ��
1 · · ·��

6 are the six surfaces of the
field and source cuboids respectively. Note that the surface-
to-surface kernel, R, is no longer singular.

Through coordinate rotations, one of the two interacting
surfaces of (61) can always be set to align with the x̂ and
ŷ directions, such that dS → dx dy. Then, two of the four
remaining integrals can be evaluated analytically, with the
following identity:

I(x, y, z) =

ˆ ˆ �
x2 + y2 + z2 dx dy

=
xy

�
x2 + y2 + z2

3

+
y
3 + 3yz2

6
log

�
x+

�
x2 + y2 + z2�
y2 + z2

�

+
x
3 + 3xz2

6
log

�
y +

�
x2 + y2 + z2

√
x2 + z2

�

+
z
3

3
atan

�
xy

z

�
x2 + y2 + z2

�
. (62)

For example, suppose that the field rectangle, �i, is of
length L and width W long the x and y directions respectively
with one corner at the origin. Then, the inner two integrals of
(61) is simply:
ˆ
�i

R dS = I(x�
, y

�
, z

�)− I(x�
− L, y�, z�)

− I(x�
, y

�
−W, z

�) + I(x�
− L, y� −W, z

�). (63)

The final two dimensions of integration over the source
surface, ��

j , are truly arbitrary, and should be evaluated
numerically. Fortunately at this point, the remaining integrand
I(x, y, z) is so smooth that it can be integrated using any
reasonable two-dimensional quadrature rule. In this paper, we
have used a third-order two-dimensional Kronrod-Patterson
quadrature rule with 9 nodes based on sparse grids [53].
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