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Abstract—The offset optimization problem seeks to coordinate
and synchronize the timing of traffic signals throughout a net-
work in order to enhance traffic flow and reduce stops and delays.
Recently, offset optimization was formulated into a continuous
optimization problem without integer variables by modeling
traffic flow as sinusoidal. In this paper, we present a novel
algorithm to solve this new formulation to near-global optimality
on a large-scale. Specifically, we solve a convex relaxation of the
nonconvex problem using a tree decomposition reduction, and use
randomized rounding to recover a near-global solution. We prove
that the algorithm always delivers solutions of expected value at
least 0.785 times the globally optimal value. Moreover, assuming
that the topology of the traffic network is “tree-like”, we prove
that the algorithm has near-linear time complexity with respect
to the number of intersections. These theoretical guarantees are
experimentally validated on the Berkeley, Manhattan, and Los
Angeles traffic networks. In our numerical results, the empirical
time complexity of the algorithm is linear, and the solutions have
objectives within 0.99 times the globally optimal value.

Index Terms—Traffic control, traffic signal timing, offset op-
timization, convex relaxation, semidefinite programming, tree
decomposition

I. INTRODUCTION

In transportation engineering, traffic signal timing is the
problem of selecting and adjusting the timing of traffic lights
in order to reduce congestion and improve traffic flow. This
classical problem is commonly formulated as three subprob-
lems:

o Cycle length optimization, where the total network is
divided into subsections, and a common cycle period is
assigned to each subsection;

o Green split optimization, where traffic lights within the
same intersection are timed to avoid conflicts; and

e Offset optimization, where traffic lights over different
intersections are coordinated to enhance network-wide
performance.

Ideally, these subproblems would be solved simultaneous-
ly for the best performance [2], [3]. Owing to issues of
computational tractability, however, the established practice
is an iterative procedure: manually divide the network into
subsections, sweep the cycle length over a range of values,
and solve the green split and offset optimization subproblems
alternatingly for each fixed cycle length [4], [5]. This is
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precisely the solution procedure implemented in the industry-
standard software packages TRANSYT-7F [6, Sec 2.4] and
Synchro [7, Ch. 18].

In this paper, we focus our attention on the offset optimiza-
tion subproblem. The goal is to create green waves, in which
green lights are synchronized to allow a car to drive through
multiple intersections without stopping for a red light, and
to maximize the length or bandwidth of these green waves.
Clearly, green waves are only possible if cycle lengths are the
same, or else the synchronization would be lost over time.
For this reason, the standard model represents traffic flow as
square waves with a common cycle length but separate green
times and red times. The exact green splits are assumed to
be given and fixed, with the understanding that they will be
separately optimized at a later stage.

A. Previous Approaches

The offset optimization problem is highly nonconvex, so
solution approaches based on incremental adjustments—such
as those implemented in TRANSYT and Sychro—can get
stuck at a locally optimal solution. In order to obtain a globally
optimal solution, the standard approach is to reformulate the
problem into a mixed-integer program [8-11] and apply a
general-purpose integer programming solver like Gurobi or
CPLEX. The latter approach is highly effective on a small
scale, but—as is typical for techniques based around integer
programming—suffers from severe computational issues as the
problem size grow large. In practice, it may not even find a
feasible point that does not violate constraints in a reasonable
amount time, let alone a globally optimal solution.

Instead, computing globally optimal solutions to large-scale
networks generally requires simplifying assumptions. In par-
ticular, if a penalty function known as a link delay function is
assigned to each road link with respect to the offset difference,
then dynamic programming can be used to minimize the sum
of all link delay functions [4], [12], [13]. For certain network
topologies, this approach is guaranteed to compute a globally
optimal solution in linear time. However, it is often tricky to
choose a link delay function that accurately reflects real-world
considerations like queues, delays, and green waves [5], [12].
Also, its use relies on an assumption of link independence that
may not be fully realistic [5].

Recently, Coogan et al. [14], [15] proposed an approach
that outperforms the link delay function approach described
above [15], as well as the incremental adjustment approach
found in Synchro [16]. By modeling traffic flow as sinusoidal,
the problem of minimizing total queue lengths can be posed
as a quadratically-constrained quadratic program (QCQP).
The QCQP is nonconvex, but can be relaxed into a convex
semidefinite program (SDP) using standard techniques, and



solved using an interior-point method. In turn, the solution to
the SDP can often recover a globally optimal solution for the
QCQP. If desired, the solution can be further refined using
TRANSYT or Synchro [17].

Nevertheless, the Coogan et al. [14], [15] approach suffers
two serious computational issues that prevent its use on
real traffic networks. First, the approach often yields, but
does not guarantee, a globally optimal solution. Indeed, such
a guarantee is not even possible in general unless P=NP.
Moreover, the convex SDP that underpins the approach has
a worst-case solution complexity of O(n*®) time and O(n?)
memory. While these figures are formally polynomial, their
large exponents limit the number of intersections n to no more
than a few hundred.

B. Main Results

Our main contribution in this paper is an algorithm that is
guaranteed to solve the formulation of Coogan et al. [15] to
near-global optimality in near-linear time. In Section III, we
prove that the algorithm always delivers solutions of expected
value at least 7/4 > 0.785 times the globally optimal value.
Moreover, assuming that the topology of the traffic network
is “tree-like”, we prove in Section IV that the algorithm has
near-linear O(n!-%) time complexity and linear O(n) memory
complexity with respect to the number of intersections n.
These theoretical guarantees are experimentally validated in
Section V on the Berkeley, Manhattan, and Los Angeles traffic
networks. In our numerical results, the algorithm achieves a
linear empirical time complexity, and the solutions found all
have objectives within 0.99 times the globally optimal value.

Our algorithm works by reformulating offset optimization
into a complex-valued quadratically-constrained quadratic pro-
gram (QCQP) with a similar form to the classic MAX-
CUT problem in combinatorial optimization [18], and relaxing
the QCQP into a semidefinite program (SDP). Inspired by
the Goemans—Williamson algorithm for MAX-CUT [19], we
prove that projecting the SDP solution onto a random hyper-
plane recovers a solution to the QCQP with an approximation
ratio of 7 /4. We solve the SDP relaxation using the sparsity-
exploiting chordal conversion technique of Fukuda et al. [20]
and the dualization technique recently developed by Zhang and
Lavaei [21]. Directly solving the SDP in the complex domain
yields significant improvement on runtime, compared to our
previous results in the conference version of this paper [1].
When a network is “sparse” in the sense that it has a bounded
treewidth [22], we prove that the overall algorithm has worst-
case complexity of O(n!®) time and O(n) memory.

Notation

The sets R and C are the real and complex numbers.
Subscripts indicate element-wise indexing. The notation X7 7
indicates the submatrix of X indexed by columns sets Z, J C
{1,2,...,n}. The superscripts “T” and “H” refer to the
transpose and the Hermitian transpose. We write i = /—1
and use Re(z), Im(z), Z, Zz, and |z| to denote the real
part, imaginary part, conjugate, angle, and absolute value.
The identity matrix is I and the vector-of-ones is 1; their

sizes are inferred from context. The trace, rank, and column
vectorization are denoted tr(X), rank(X), and vec(X). X = 0
means that X is Hermitian and positive semidefinite. |S]
denotes the cardinality of a set S.

II. PROBLEM FORMULATION

To determine traffic signal offsets, we adopt the traffic
network model with sinusoidal approximation proposed in
[15]. In what follows, we will first describe the model and
explain this sinusoidal approximation technique. Then, using
this model, we formulate a mathematical optimization problem
to select offsets that minimize the lengths of vehicle queues

of the networks.

Fig. 1: Traffic Network

A. Traffic Network Model

Consider a traffic network described by a directed graph
G = (SU{e}, £). Each node of the graph represents an inter-
section; node i € S = {1,2,...,|S|} represents a signalized
intersection and node ¢ is the dummy intersection (source) for
traffic originating outside the network. Let n = |S|+1 be the
number of intersections including the dummy intersection. The
dummy node e is also referred to as node n. Each directed edge
in L represents a traffic link between two intersections/signals
and the vehicle queue associated with the link. For each | € L,
7(l) € S indicates its upstream intersection and o(l) € S
represents the downstream intersection which serves the queue
of the link. £ = {l € £,7(l) = €} C L is the set of entry
links that direct exogenous traffic from the dummy intersection
(source) to the network; other links are non-entry links and the
travel time from its upstream to downstream intersections is
denoted by ;. There is no need to explicitly model links that
exit the network because exiting traffic are considered in the
calculation of turn ratios, which will be defined later.

The vehicle queue associated with each link [ € £ has
length ¢;(t) at time t. The queue length ¢;(t) follows a
continuous-time fluid queue model given by

Q@(t) = ar(t) — di(2) (D

where a;(t) is the arrival rate for vehicles arriving from
the upstream intersection and d;(t) is the departure rate that
depends on the downstream intersection signal. Both a;(t) and
d;(t) are in units of vehicles per hour.



Vehicles coming from a link are allowed to pass through an
intersection when the link is activated by the traffic signal, i.e.,
green light for the link. To avoid collision, each signal switches
among activation patterns of non-conflicting links according
to a signal control sequence. All intersections are assumed to
operated under fixed time control [23] with common cycle.
This means that the signal control sequence of each intersec-
tion has a fixed periodic cycle, and all intersections have a
common cycle time 7" = 1 time unit.

The signal offset 6, € [0,1) for an intersection s € S
represents the phase difference of the signal control sequence
from a global clock. For each link [ € L, vehicles from its
queue is allowed to pass through intersection o(l) at times
n+ 0,0+ forn =0,1,2,..., where y; € [0,1) is called
the link’s green split that represents the time difference of the
midpoint of the activation time for the link and the beginning
of the offset time 6, ;). For [, k € L, the turn ratio 5y, € [0, 1]
denotes the fraction of vehicles that are routed to link k& upon
exiting link /. When o (1) # 7(k), i = 0 because the two
links are not connected. For every link [ € £ it holds that

Zﬁlk <1
kel

where strict inequality in the above equation models the
situation that a fraction of vehicles exit the network via an
unmodeled link from intersection o ().

Similarly to [15], we assume that the network is in the
periodic steady state and approximate all arrivals, departures,
and queue lengths by sinusoid functions with period 7' = 1.
Specifically, the departure rate of link [/ is assumed to be

di(t) =fi(1 + cos(2m(t — 05y — )))

where f; is the average departure rate of link {. By defining
zj = e?™% for j € S and D; = fie~**™, one can write the
departure rate at link [ as

di(t) =f1 + Re (€®™ Dz, ) - 2

Since vehicles arrive at a non-entry link from its upstream
links after a delay equal to the travel time, the arrival rate of
a non-entry link [ € £\ £ is given by

a)(t) = Z Brady(t — M\i).

kel

The periodic steady-state assumption implies that the average
arrival rate is the same as the average departure rate at each

link [23], i.e.,
1 1
/ al(t)dt = / dl(t)dt.
0 0

Therefore, we have

> Bufi = fi.

kel

Then, the arrival rate can be further expressed as
ai(t) =f1 + Re (eiQﬂ—tAlZT(l)) 3)
where Aj = e~ 2™ 3" B Dy.

For an entry link / € &, the approximation assumes that

ai(t) = fi + aycos(2n(t — ¢1)))
= fi+Re (e”™ Az, ) 4)

where 2,y = e’?m0n — 1 with the offset #,, of the dummy
intersection € (intersection n) defined to be 0 in the above
equation, oy < f; is the relative amplitude of the arrival peak
minus the average rate, A; = a;e”2"%, and ¢; € [0, 1) is the
offset for the center of the arrival peak.

It follows from the queue dynamics (1), departure rate (2)
and arrival rate (3)-(4) of the links that the queue length ¢; (%)
of each link [ € £ evolves according to the equation

() = ay(t) — di(t)
=Re (e”™(Aiz, 1) — Diz,))) -

Accordingly, the average queue length at link [/, denoted by
@, is given by

1 _ _

Q= %KAIZTU) — DiZy))]-

B. Offset Optimization Problem

The average queue lengths @); where [ € L, are im-
portant performance metrics for traffic networks. Following
the approach in [15], we formulate the offset optimization
problem as selecting offsets 0;,s = 1,2, ..., n with the goal of
minimizing the total average squared queue length. Note that
the queue lengths are invariant to a constant shift for all 6,
where s = 1,2, ..., n. Therefore, instead of restricting 6,, = 0
for the dummy intersection ¢, one can allow 6,, to be a variable
that takes any value in the interval [0,1) and set the offset of
each intersection s € S to be the relative offset 6, — 6,,. Then,
the offset optimization problem can be formulated as follows:

L. 2
mjnime 29 ®
lec
) 1 _ _
subject to Q; = §|(A1ZT(1) — DiZ, )|
zs =€ s=1.2 ... n.

Note that the queue length of each link satisfies

1 _ _
Ql2 = (271')2 ‘(AIZT(Z) - Dlza(l))|2
1
= 2n)? (|Al|+]Di)?
1 _ _ - _
*W@Ml||Dl|+DzAzZT(z)Za(z) + D1 Az 1) Z0(1))-

Since (| A;|+|Dy])? is constant, minimizing Y, » Q7 is equiv-
alent to maximizing

ZQ\AN\Dl|+DlAlir(z)2a(z) + DiAizr () Zo (1))

lec
= Z(|All|Dl||ZT(z)\2+|Az||Dl\|Zo(z)|2
leL
+ DiAiZr (1) 201 + DiAizr (1) Z0(1))
=HW2 (6)



where z € C" is the vector of variables z;, and W € C"*"
is a Hermitian matrix whose elements are given by:

Wii= > JAlID+ Y |4|D) (Ta)
leL:r(l)=yj leL:o(l)=j
Wik= > DA+ > DA
leL:r(l)=j,0(l)=k leL:r(l)=k,0(l)=j3
for j # k. (7b)
Lemma 1. The matrix W is positive semidefinite.
Proof: For every z € C", it follows from (6) that
Wz = (| AND 2 P+ A D1l 26y
leL
+ DiAiZ- )20y + DiAize ) Zoqy)-
In addition, for every link [ it holds that
DiAizZ 1y Zo) + Didiz- () Z0 1)
= 2Re(Di A1z 4y 20(1)) = —2| Al Dil[2- )|z )
Therefore,
Wz = (JAND |2 P+ A Dil| 20y
leL
= 2[A|Di]|z- |20 ) |
= Z|A1‘|Dl|(|zfr(l)‘_|Za(l)|)2 > 0.
lec
This concludes that W is positive semidefinite. ]

Now, one can formulate the offset optimization problem (5)
as the following QCQP:

maximize 27 Wz ©))
zeCn

subject to |zj|2: 1, j7=1,2,...,n.

Given a solution 2 to the QCQP (8), one can obtain the optimal
offsets of the traffic network via the equation

1
s = %(Zés - ZZ?n) (9)

for every intersection s € S.

Remark 2. Note that the QCQP (8) formulated in this paper is
subtly different from the one considered in [15]. Specifically,
the diagonal elements of the matrix W in [15] are all zero so
the matrix is not positive semidefinite. In our formulation, the
matrix W in (8) is positive semidefinite, which will enable us
to compute the approximation ratio of the relaxation.

III. APPROXIMATION ALGORITHM

In the previous section, offset optimization was cast as the
optimization problem (8) that maximizes a convex objective
function subject to nonconvex constraints. This QCQP formu-
lation results in a nonconvex optimization problem. In fact,
such nonconvex QCQP is known to be NP-hard [24]. Unless
P=NP, we have to focus on finding an efficient approximation
algorithm with polynomial complexities for large-scale traffic
networks.

Note that this formulation of offset optimization has a
similar structure as the QCQP formulation of the classic MAX-
CUT problem in combinatorial optimization [18]. Indeed, if
the variable z in problem (8) is forced to be real, as in z € R”,
then the constraint |z;|= 1 implies z; € {+1,—1}, and the
maximization of a quadratic form subject to £1 variables
is exactly MAX-CUT. Consequently, we may view (8) as a
complex version of the MAX-CUT problem.

Based on the celebrated Goemans—Williamson algorithm
[19] for MAX-CUT, we provide below a polynomial com-
plexity algorithm that solves (8) with a performance guarantee
of /4 > 0.785 (i.e., the value of the solution is at least
a factor 7/4 times the globally optimal value). In practice,
the proposed algorithm might perform even better than the
provable guarantees. Our numerical results in Section V find
that every solution enjoys a performance guarantee of more
than 0.99.

Following the idea of the Goemans—Williamson algorithm,
one can interpret (8) as an optimization problem over the one-
dimensional unit sphere. This means that the problem restricts
each decision variable z; € C to be an one-dimensional unit
vector. Replacing each one-dimensional vector z; € C by an
n-dimensional unit vector v; € C" leads to the relaxation:

n n
.. H
maximizg, 2 2 Wity o

(10)

subject to ||lv;|*=1, j=1,...,n.

This nonconvex problem can be reformulated into a convex
problem by a change of variables X = [vfv;] € C™*™:

maximize tr(WX)
X E(Cn Xn

(1)

subject to X ; =1,
X =0.

j=1,...,n,

Lemma 3. Problem (11) is a relaxation of (8), and therefore,
its value gives an upper-bound for the optimal value of (8).

Proof: Given any feasible solution z € C" of (8), let
v; = (24,0,0,...,0) € C"* for j =1,2,...,n. Then, v]Hvk =
Zjzp for all j,k =1,2,...,n. Consequently, (v, v, ..., Uy)
is feasible for (11) and its objective value in (11) is the same
as the objective value of z in (8). |
Problem (11) is an SDP for which an interior-point method
is able to compute an optimal solution X in polynomial
time with a given accuracy. We can recover a corresponding
globally-optimal set of vectors 01,...,0, € C" for (10) by
factoring X =VHV and taking each ©; to be the j-th column
of the matrix V.

Remark 4. The SDP (11) can also be generated from (8)
using a standard SDP relaxation procedure [25]. Specifically,
by adding a rank constraint rank(X) = 1 in (11), one obtain
the original QCQP (8) because any rank-one matrix X can be
factored into X = zzf. The relaxation (11) becomes exact
if its solution X has rank one. This special situation occurs
for certain types of networks [26] and the offsets obtained
from the SDP solution achieves optimal performance for these
cases [15]. In general, however, the solution X of (11) has



a rank strictly greater than one. Nevertheless, we observe in
our numerical experiments in Section V that the associated
performance guarantee (i.e. the ratio between the upper- and
lower-bounds on the performance) exceeds 99% for every
case.

In spirit of the Goemans—Williamson idea method, one can
project an optimal set of vectors 01,...,0, € C™ for (10)
back onto the one-dimensional unit sphere in C by randomized
rounding

— Hpy.
S5 =Ty,

zj = s;/|sjl- (12)

Here, » € C" is a random vector whose real and imaginary

parts are selected independently and identically from the n-
dimensional Gaussian distribution, as in

T’l,TQNN(O,I) (13)

r =17y +1irs,

where N (0, I) denotes the n-dimensional Gaussian distribu-
tion with identity covariance matrix and zero mean.

This rounding method can be repeated with several choices
of r, and we select the candidate solution with the best
objective value. The follow result states that this randomization
rounding offers a remarkably high-quality solution.

Theorem 5. Given the optimal solution v1,...,0, € C" for
(10), define the candidate solution z € C™ for (8) using (12)
for each z; € C, in which r € C" is selected as in (13). Then,

n n

~H ~ ~H N ™
2D Wik o > optocor > E [ WE] > Zoptocor,
j=1k=1

where optycop is the globally optimal value of (8) and E /]
is the expectation operator.

Proof: The first bound is true because (10) is a relaxation
of (8) by Lemma 3, and the second bound holds because
Z1,...,2n € C is not necessarily optimal for (8). The third
bound follows from a result of [24], noting that W > 0 from
Lemma 1. |

In summary, this section describes a m/4-approximation
algorithm for the QCQP (8) of the offset optimization problem
that comprises two key steps:

1) Solve the SDP relaxation (11) and obtain the optimal

solution X € C™"*"; and

2) Round 01,...,0, € C™ into Zq,..

randomized procedure in (12).

.y2n € C using the

Standard algorithms implement these two steps with a com-
bined complexity of O(n*%) time and O(n?) memory, with
the first step dominating the overall complexity. These figures
are polynomial, and hence “efficient” in theory. In practice,
however, they become prohibitive for large-scale traffic net-
works with more than 1000 intersections.

IV. EFFICIENT IMPLEMENTATION FOR SPARSE NETWORKS

When a traffic network is large but sparse in the sense that it
has a bounded treewidth [22], we show in this section that the
approximation algorithm described in the previous section can
be implemented in near-linear O(n!-®) time and linear O(n)
memory.

In the following, we first describe the concept of tree
decomposition and use it to convert the original problem
to a reduced-complexity problem. Then, we further simplify
the complexity to obtain a near-linear time approximation
algorithm for offset optimization.

A. Tree Decomposition

For a traffic network G = (SU{e}, £), the graph theoretical
concepts of tree decomposition and treewidth are defined as
follows:

Definition 6. A tree decomposition of a graph G of is a pair
(Z,T), where T = {74, ...,Z,} are n subsets of nodes of G,
and 7T is a tree with vertices Z, such that:

1) (Node cover) For every node s of G, there exists Z; € 7
such that s € 7j;

2) (Edge cover) For every edge [ of G, there exists Z, € 7
such that (1) € Zy, and 7(1) € Zy; and

3) (Running intersection) If s € Z; and s € Iy, then we
also have s € 7,,, for every Z,, that lies on the path from
Z; to I, in the tree T'.

Definition 7 ([22]). The width of a tree decomposition (Z,T")
is w — 1 where

w=max |Z;|, (14)
J

i.e., the width is one less than the maximum number of

elements in any subset Z;, € Z. The treewidth of a network

is the minimum width amongst all tree decompositions. The

network is said to have a bounded treewidth if its treewidth is

O(1), i.e., independent of the number of nodes n.

From the definition, the empty graph has treewidth of zero,
and tree and forest graphs have treewidths of one. Basically,
the treewidth of a graph indicates how “tree-like” the graph
is. The treewidth can be viewed as a sparsity criterion which
determines the complexities of many problems related to a
graph. The problem of computing the exact treewidth of a
graph is known to be NP-complete [27]. For bounded treewidth
networks known a priori to have small w < n, the treewidth
and the corresponding tree decomposition can be determined
in O(2“n) time [28]. In practice, it is much easier to compute
a “good-enough” tree decomposition with a small but subopti-
mal value of w, using one of the heuristics originally developed
for the fill-reduction problem in numerical linear algebra. In
our implementation, we use the simple approximate minimum
degree algorithm in generating a tree decomposition [29]. This
approximately coincides with the simple “greedy algorithm”,
and does not typically enjoy strong guarantees. Regardless,
the algorithm is extremely fast, generating permutations for
graphs containing millions of nodes and edges in a matter of
seconds.

Algebraically, a tree decomposition of our traffic network
can also be described by a fill-reducing permutation matrix P.
More specifically, given a permutation matrix P € R"*", we
can factor the matrix W of the network into a Cholesky factor
L satisfying

Lo = PWPH, L is lower-triangular, L;; > 0. (15)



Let Zy,...,Z, C {1,...,n} be the column index sets from
the sparsity pattern of L defined by

Ij:{ke{l,...,n}:Lk7j¢O}. (16)

From the column index sets 74, ...,Z,, define a set of parent
pointers p : {1,...,n} = {1,...,n}:

|Ij‘: L,

N F
— 17
p(y) {mini{i>j:i€Ij} 1. 0

Lemma 8. The collection of the column index sets T =
{T4,...,I,} together with the tree T constructed by nodes
T and edges {(Z;,1,(;y),j = 1,2,...,n} constitute a tree
decomposition for the network G.

Proof: According to [30], the pair (Z,T) forms a tree
decomposition of W. From the definition (7) of W, the entry
W; 1. is zero if no link connects between the j-th intersection
and the k-th intersection. Therefore, the sparsity pattern of the
matrix W is the same as the traffic network G. ]

For networks with a bounded treewidth, we are able to find
a tree decomposition whose width is w = max;|Z;|= O(1).
Since the Cholesky factor L of W has at most w nonzero
elements per column, L of such networks will be a sparse
matrix containing at most O(n) nonzero elements.

In the case of real-world traffic networks, the graphs are
almost planar by construction, because the vast majority of
roads do not cross without intersecting. Planar graphs with
n nodes have treewidths of at most O(y/n), attained by
grid graphs; a tree decomposition within a constant factor
of the optimal can be explicitly computed using the planar
separator theorem and a nested dissection ordering. Practical
traffic networks tend to have treewidths possibly much smaller
than the O(y/n) figure. While local networks may resemble
grids, inter-area networks interconnecting wider regions are
more tree-like. Accordingly, their treewidth is usually bounded
by the square-root of the size of the largest grid, which is
relatively small even for networks typically thought of as
“grid-like” such as Manhattan and Downtown Los Angeles.

B. Clique Tree Conversion and Recovery

Using the concept of tree decomposition, this subsection de-
scribe the clique tree conversion technique of [20] to simplify
the m/4—approximation algorithm proposed in the previous
section.

Suppose that the network has a bounded treewidth and we
are given a tree decomposition with w = O(1) represented
by a fill-reducing permutation P, its associated index sets
Iy,...,Z1,, and the parent pointers p. From now on, without
loss of generality, we assume that P = I; otherwise, we can
solve the permuted problem with W = PWPT, and reverse
the ordering z = P72 once a solution Z has been computed.

Given the tree decomposition, the clique tree conversion
technique reformulates (11) into a reduced-complexity prob-

lem with the variables X; € C%1XI5l j =1,... n:
n
inimi tr(W, X 18
e 2 r(W;X;) (18)
subject to (X;)pe =1, j=1,...,n, k =1,...,|Z]
Rp3),5(X5) = Rjp() (Xp(s)»
X;=0, j=1,....n,

where Wy, ..., W; are matrices satisfying

Z tI‘(WjXIj I )= tl“(WX)
j=1

with respect to the original W matrix, over all Hermitian
choices of X € C"*™. The exact method to construct
Wi, ..., W; can be found in [21]. The linear operator Ry ; :
CHIxIZ51 — ClZxIxIZxl js defined to output the overlapping
elements of two principal submatrices indexed by Z;, and Z;,
given the latter as the argument:

Rk,j(XijIj) = XIWIJ‘ IeNZ; — Rj,k(XIk i)

The associated constraints R,;) ;j(X;) = R;,;)(Xpe)) in
(18) are known as the overlap constraints.

From the bounded treewidth property, this conversion re-
duces the number of decision variables from O(n?) for X in
(11) to O(wn) for {X;,7 =1,...,n} in (18).

,Xn, of (18) are related
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Lemma 9. The solutions Xl, Xg, e
to the solution X of (11) by

XIj,Ij:Xj; ]:1,7’”

Proof: The proof is omitted as its essentially the same as

the real-valued version in [20]. |
The above relation allows us to recover the solution X
of (11) from solutions Xl, ceey Xj of (18). Note that X
is generally a dense matrix, so simply forming the matrix
would push the overall complexity up to quadratic O(n?)
time and memory. Fortunately, the Cholesky factorization of
X is sparse due to the bounded treewidth property. Therefore,
we compute X implicitly in factorized form a sparse factored
form X = F~HDF~!, where D is diagonal and F is lower-
triangular with the same sparsity pattern as L in (15). This
can be done by the following Algorithm 1 adopted from [30].

Algorithm 1 Positive semidefinite matrix completion
., I, defined in (16) and

Input. The column index sets 77, . .
the solutions Xl, . 7Xj to (18).
Output. The solution X to (11) in the form of X =
F~HDF~1 where D is a diagonal matrix and F is a lower-
triangular matrix with the same sparsity pattern as L.
Algorithm. Iterate over j € {1,...,n} in any order. Set
F; ; = 1 and solve for the j-th column of D and F' by finding
any Dj ; and Fz,\(;; ; that satisfy

N 1 D,
X, _ w} .
! {sz\{j}’j] [ 0




With the factorized solution X = F~H2DF~1 we can now
efficiently implement the randomized rounding procedure de-
scribed earlier in (12). Specifically, from X = F~#DF~! =
VHY we obtain V = DY/2F~1. Then, (12) is equivalent to

FHs=DY2r 2, =s;/|s (20)
where we recall that the real and imaginary parts of the random
vector € C™ are selected independently and identically from
the n-dimensional Gaussian distribution. Since F' is a lower-
triangular matrix (with the same sparsity pattern as L), one can
compute Z from (20) by solving a sparse triangular system of
equations in O(wn) time.

In summary, this subsection presents a reduced-complexity
implementation of a m/4-approximation algorithm for the
QCQP (8) of the offset optimization problem given a tree
decomposition with w = O(1). The main steps are described
as follows:

1) Reformulate (11) into the reduced complexity problem
(18).

2) Solve (18) to obtain solutions Xl, ... ,Xn.

3) Recover the solution of (11) in the sparse factored form
X = F~HDF~1 using Algorithm 1.

4) Recover a choice of Z4,..., 2, € C via the randomized
rounding method (20).

We will show later that the complexity of the overall algorithm
is dominated by Step 2, i.e., the cost of solving the semidefinite
program (18). An interior-point method solves (18) in O(y/n)
iterations, with the cost of each iteration dominated by the
solution of a set of linear equations over O(n) variables. These
equations can be fully dense despite sparsity in the original
problem, so the worst-case complexity of an interior-point
solution of (18) is O(n3-3) time and O(n?) memory. Next, we
show that these complexity figures can be reduced to linear
by using dualization to exploit sparsity.

C. Dualization

A recent result of [21] shows that the complexity of solving
the real-valued version of (18) can be significantly improved to
near-linear O(n'®) time and linear O(n) memory complexi-
ties by a dualization procedure. We present in this subsection a
complex-valued version of the algorithm of [21] for the traffic
offset optimization problem.

To solve (18), we begin by putting (18) into primal canon-
ical form:

n
e _H
minimize Wi T 20n
zl,“.,:z:nE(C”Q ; 7
[N11 N1y |
0
N N | [T |2
: nl " nn . _
subject to M, 0 SR
Tn 1
| O M, |
IjE’Cj, j=1...,n

Each variable x; = vec(X;) (respectively, w; = vec(W;)) is
the vectorization of X; (respectively, W;) and each K, is the
corresponding positive semidefinite cone. The matrices Vi
implement the overlap constraints in (19). That is, for each
j, the j-th block row Nji,..., N, implements the overlap
constraint between Z; and its parent Z,(j). Therefore, the j-
th block row has at most two nonzero sub-blocks: N;, = 0
except k = j or k = p(j). Each constraint matrix M; isolates
the diagonal of X, as in (M;z;)k = (X;)k.k-
Let N and M denote the matrices for the constraints:

N1y Nip M,y 0
N: '.. y M:

an Nnn 0 Mn

Then, the complexity of each step of the interior-point iteration
solving (21) depends on the sparsity pattern of M M* where
M = [N MH)H  Despite the nice sparsity structure of M,
the matrix MM is generally dense (see [21] for an example).
Therefore, it takes O(n3-%) time and O(n?) memory to solve
(21) using an interior-point solver.

On the other hand, the matrix MM is sparse from the
block sparsity structure of N and M.

Lemma 10. The matrix M M has O(w*n) nonzero elements,
and it takes O(w®n) operations to compute M M from N
and M.

Proof: This is a corollary of the result of [21]. In
particular, M is the adjacency matrix of an empty graph, so the
block sparsity structure of M M is the same as the sparsity of
the adjacency matrix of the tree 1" of the tree decomposition.
Then, M M has O(n) nonzero blocks, and each of the blocks
has at most O(w*) nonzero elements. The computation of
MMM is done by adding up O(w?n) sets of blocks with
O(w*) elements which takes O(w%n) operations. ]

In order to exploit the sparsity structure of MH M, one way
is to dualize the problem [30]. The dualized problem of (21),
posed in dual canonical form, is given by:

n
maximize — Z qz;f y; (22)
viyn€Ch?
[N11 N1, |
0
N N 1
. nl nn
subject to M, 0 + 50 = |
: Yn 1
| O M, |
—yj+s;=0, j=1,...,n
So € {0}n+1, S5 € ICj.

Here, {0}”Jrl denotes the so-called “equality-constraint cone”,
whose dual cone is a free variable of dimension n + 1.

Since (22) is the dual problem, with a general-purpose
interior-point method like SeDuMi, SDPT3, and MOSEK,
each iteration involves solving a normal equation of matrix
MM?* . We then achieve the desired complexity results from
the sparsity of MMM,



Theorem 11. A general-purpose interior-point method solves
the SDP (18) by solving its dual canonical form (22) to e-
accuracy in

O(w*5n'5loget) time and O(w*n) memory.

Proof: The proof in [21] for real-valued SDPs can be
adopted to prove this theorem. First, note that a general-
purpose interior-point method solves an order-f linear con-
ic program posed in the canonical form to e-accuracy in
O(V0@loge1) iterations. The cone in (22) has order § =
O(wn) from the construction of the tree decomposition, so
the interior-point method converges in O(w?>n%?loge=1)
iterations.

At each interior-point iteration, the complexity is dominated
by the solution of the normal equations that are linear equa-
tions described by a matrix H whose sparsity pattern is the
same as M M. From Lemma 10, forming MMM requires
O(w%n) time and O(w?n) memory. We then have the stated
memory complexity, and the time complexity result is obtained
by multiplying O(w%*n%5loge=1) with O(w®n). [ ]

D. Overall Algorithm

This section presents a reduced-complexity implementation
of a m/4-approximation algorithm for the QCQP (8) of the
offset optimization problem. The full algorithm is described
as follows:

1) Compute a tree decomposition for the traffic network G
and its fill-reducing permutation P using the minimum
degree algorithm.

2) Permute W as W « PW PH compute the Cholesky fac-
tor L as in (15), and determine the index sets Z1,...,Z,
and the parent pointers p, as in (16) and (17).

3) Use the clique tree conversion technique to reformulate
(11) into (18).

4) Convert (18) to the dualized problem (22).

5) Solve (22) as a dual canonical problem using a
general-purpose interior-point method to obtain solutions
X1,...,X,, of (18).

6) Recover the solution of (11) in the sparse factored form
X = F~HDF~! using Algorithm 1.

7) Recover a choice of Zq,..., 2, € C via the randomized
rounding method (20). This randomization step can be run
several times to obtain a solution with the best objective
value.

8) Reverse the fill-reducing permutation 2 < P2,

Corollary 12. The proposed algorithm generates a choice of
21, ..., %2n € C that satisfy the bounds in Theorem 5 and can
be computed with the same time and memory complexity as
described in Theorem 11.

Proof: The minimum degree algorithm in Step 1 takes
O(wn) time and memory. Step 2 is dominated by the Cholesky
factorization step, for O(w®n) time and O(w?n) memory.
Steps 3 and 4 are algebraic manipulations, requiring O(w?n)
time and memory. Step 5 uses O(w®n'5loge~!) time and
O(w*n) memory according to Theorem 11. Algorithm 1 in
Step 6 is dominated by solving n linear systems of up to

size w? for O(w3n) time and O(w?n) memory. The round-
ing method of (20) in Step 7 can be performed by back-
substitution in O(wn) time and memory. Finally, Step 8 takes
O(n) time and memory to obtain an approximate solution with
the guarantees in Theorem 5. [ ]

Remark 13. The offset optimization problem (8) is formulated
as a complex-valued QCQP. This complex-valued QCQP has
an equivalent real-valued formulation. Specifically, consider
z = x — 1y where x,y € R" are the real and imaginary parts
of z. Then, (8) is equivalent to

Sty wew] []

subject to x?—l—yjz.:l, 7=12,...,n.

maximize [z y*]
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One can then follow a similar procedure to solve this trans-
formed real-valued problem as in our conference version [1].
However, transforming a complex QCQP into its real-valued
counterpart also doubles its treewidth. In practice, the resulting
algorithm is about a constant factor of 10 times slower than
the one proposed in this paper. See [31] for such speed-up in
optimization solvers using complex numbers instead of real
numbers.

V. NUMERICAL EXPERIMENTS

In the previous sections, we proved that our algorithm solves
offset optimization to a global optimality ratio of /4 > 0.785
in near-linear O(n'®) time. In this section, we benchmark
these guarantees on two datasets:

1) Realistic dataset for the Manhattan network, with real
network topology, flow rates and turning ratios.

2) Synthetic dataset for the Berkeley, Manhattan, and Los
Angeles networks, with real network topologies but syn-
thetic flow rates and turning ratios.

In our numerical results described below, the empirical time
complexity of the algorithm is linear O(n), and the computed
solutions have global optimality ratios exceeding 0.99.

A. Realistic Manhattan dataset

We demonstrate our algorithm in a real-world setting, by
solving offset optimization on a realistic traffic model of
Manhattan from Osorio et al