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Given n-dimensional random variable

X =[X1,Xs,...,X,]} ~ Distribution

Consider estimating the covariance matrix
pi = E[Xi], Ny =E[(Xi — pa) (X5 — p5)]
from N samples (or realizations)
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Given n-dimensional random variable

X =[X;,Xs,...,X,]! ~ Distribution

Consider estimating the covariance matrix

pi =KX, Xy = E[(Xs — p) (X5 — py)]

from N samples (or realizations).
Maximium likelihood estimator. N = O(n) samples.

Graphical lasso estimator. N = O(log(n)) samples,
assuming sparse inverse covariance matrix

© = X! exists and contains O(1) nonzeros per column

Assumption frequently valid in real-life applications.
log(n) factor optimal due to coupon collector effect.



Graphical lasso most useful in high-dimensional settings
dimension n > num. samples IV.

« Shrinkage estimator, e.g. Markowitz portfolio

Goal: minimize number of samples.

« Markov graphical models, e.g. in neuroscience

Goal: impose sparsity on inverse covariance matrix.

X =[X1,Xo,...,Xn)" ~N(p,0™1h.
@i,j =0 “— X; 1 Xj | rest



Graphical lasso most useful in high-dimensional settings
dimension n > num. samples V.

State-of-the-art solvers usually O(n3) time and O(n?) space
« GLASSO (Friedman et al. 2008)
« CVXOPT (Dahl et al. 2008)
« (BIG)-QUIC (Hsieh et al. 2013)

BIG-QUIC solved n = 200k in 5 hours on 4 x 8-core CPUs
Complexity motivates other estimators, e.g. EEGM (Yang et al. 2014).

This work. Solve graphical lasso in
O(n + n®/p) time and O(n) memory

on p parallel processors, assuming modestly large A and
bounded degree chordal embedding

We solved n = 200k in <70 minutes on a Macbook Air.



Review. Graphical lasso

Estimate the n x n covariance matrix

pi =EXi], i =E (X — p) (X5 — py)]
from N samples.

Approximate expection with average, obtain MLE
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Solve graphical lasso optimization problem

A

© = minimize trace(SO) — logdet © + A Z 1055

©>0 y
17]
Bottleneck is the solution of this problem.




Review. Threshold and MDMC (Fattahi & Sojoudi 2017)
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Review. Threshold and MDMC (Fattahi & Sojoudi 2017)

2. Estimate parameters. Solve max-det matrix completion

Soft-thresholded MLE
mlrgn%lze trace(S 20) — logdet © ( >
-

subject to ©; ; =0 wherever (Sy);; =

Compare with the original graphical lasso problem:

Original MLE Nonsmooth term

A~

O = mnéli%lze trace(SO) — logdet © + A ; 1055
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Our new bottleneck:

t 5),0) — logdet ©
mlrgr:blze race(S5,0) — logde

subject to ©; ; =0 wherever (S));; =
State-of-the-art solvers usually O(n3) time and O(n?) space
If sparsity graph of S, is bounded degree chordal, then

O(n) time and O(n) space
via recursive closed-form solution (Dahl et al. 2008)

f+«(C) = gli%{trace(C@) —logdet® : 0, ;=0 V(3,7) ¢ G}
-

This is a self-concordant barrier function on the space
of sparse matrices (Andersen et al. 2010)

={0eS§":0;;=0 V(i,j) ¢ G}.

Use insights to solve MDMC in O(n) time and space.
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Main contribution. Newton-CG for MDMC

Inimize t S — log det
minimize race(S5)0) — logdet ©

subject to ©; ; =0 wherever (S));; =0

1. Embed nonchordal sparsity graph G of S, within a
chordal graph G-tilde.

S=LLT

2000

4000 1

6000 | _ .

8000

10000

12000

0

2000

4000 6000 8000 10000 12000
nz =50909

L

20001

4000 1

6000 [ _ .

8000

10000

12000

0

2000

4000 6000 8000 10000 12000
nz =45937




Main contribution. Newton-CG for MDMC

minimize trace(S5,0) — logdet ©
©>0

subject to ©;; =0 wherever (Sy);; =0
2. Pose as optimization problem over the fill-in
minimize tr(S50) — log det ©
subject to ©;; =0 V(i,5) € G\G
0cSy, ©6-0 |

Most sparsity constraints / Extra edges added to
show up here to make graph chordal

Optimization problem over the cone of sparse

semidefinite matrices. )



Main contribution. Newton-CG for MDMC
minimize trace(S5,0) — logdet ©
©>0
subject to ©; ; =0 wherever (S));; =0

3. Solve the dual problem Self-concordant barrier
on the cone of sparse

~— matrices
maximize — fi(S,+Y)

. n

subject to Y € Sé\G ~
Edges added to

to make graph chordal

Self-concordance guarantees g-accuracy in O(log log (1/¢€))

Newton iterations. .



Main contribution. Newton-CG for MDMC

minimize trace(S5,0) — logdet ©
©>0

subject to ©; ; =0 wherever (Sy);; =0

4. Solve Newton direction using conjugate gradients

maximize — fy(S+Y)

. n
subject to Y € SG\G

Main Theorem (Informal). CG converges to ¢-

accuracy in O(log(1/¢)) iterations

Each CG iteration costs O(n) time and O(n) memory.
soft-O(1) CG iters. over soft-O(1) Newton iters. QED.



Numerical results on banded graphs

Synthetic ©=2%-1 with banded sparsity pattern
Off-diagonals [-1,+1], corrupted to zero with p=0.3
Diagonals set to sum of off-diagonals plus one
Solve MDMC on this sparsity pattern
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Numerical results on real-life graphs

Synthetic ©=%-1 from real-life graphs.
Off-diagonals [-1,+1], corrupted to zero with p=0.3
Diagonals set to sum of off-diagonals plus one
Estimate Z from 5000 i.i.d. samples from N(0, )
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Conclusions

Graphical lasso estimates covariance matrix assuming

that its inverse is sparse. Applications in finance and
neuroscience.

Nice theory, most useful in high-dimensional setting.
This paper. Fast algorithm for graphical lasso
— O(n) time and space.

Numerical results. Solve n = 200k problem in 70
minutes on a laptop.

Next steps. Benchmark statistical performance for
recovering ground-truth.
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Thank you! — Poster #1
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