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Abstract

The power systems state estimation problem com-
putes the set of complex voltage phasors given
quadratic measurements using nonlinear least squares
(NLS). This is a nonconvex optimization problem, so
even in the absence of measurement errors, local search
algorithms like Newton / Gauss–Newton can become
“stuck” at local minima, which correspond to nonsen-
sical estimations. In this paper, we observe that local
minima cease to be an issue as redundant measurements
are added. Posing state estimation as an instance of the
quadratic recovery problem, we derive a bound for the
distance between the true solution and the nearest spu-
rious local minimum. We use the bound to show that
critical points of the nonconvex least squares objective
become increasing rare and far-away from the true so-
lution with the addition of redundant information.

1. Introduction

In power systems, state estimation is the problem
of recovering the underlying system voltage phasors,
given possibly inaccurate SCADA (supervisory control
and data acquisition) measurements, which are typically
real and reactive power line flows and power injections,
and voltage phasor amplitudes [1]. State estimation
proves situational awareness to a system operator, by
allowing them to monitor and assess the condition of
the power system at any given instant, and if needed,
take action. Operators use state estimation to identify
anomalous system conditions, to dispatch generation,
and to avoid stability and thermal limits [2]. These func-
tions are posed to become even more important as the
penetration of wind and solar generation increases, due
to the inherent variability and uncertainty of such re-
sources [3].

∗This work was supported by ONR N00014-17-1-2933, DARPA
Young Faculty Award, and AFOSR YIP Award.

On the other hand, a lack of situational aware-
ness—particularly in observing the voltage phasor an-
gles over a wide area—has been cited as a signifi-
cant cause to a number of blackouts [4, 5]. A post-
mortem analysis of the August 2003 Northeast black-
out revealed that the voltage phasor angle difference
between Cleveland and Michigan had been slowly di-
verging for nearly an hour before the start of the actual
blackout [6]. Had an accurate, real-time state estimation
been in place, the operators would have had warning of
the impending problem and an opportunity to take re-
medial action [7].

1.1. State estimation via nonlinear least
squares

Nonlinear least squares (NLS) for state estimation
as originally suggested by Schweppe [1, 8] remains
the most common approach to this day. Given an N-
bus power system, we define the voltage phasors as
z ∈ CN . Then the state estimation problem is the prob-
lem of recovering z given a set of SCADA measure-
ments b1, . . . ,bm ∈ R, where each i-th measurement

bi = fi(z)+ εi where fi(z) = z∗Miz (1)

is the sum of a known “measurement” function fi(·) and
an unknown measurement error εi. (Here, z∗ denotes the
Hermitian conjugate of the vector z, and Mi = M∗i is a
complex Hermitian matrix.) If the errors ε1, . . . ,εm are
selected i.i.d. from the zero-mean normal distribution
with variances 1/w1, . . . ,1/wm, then the maximum like-
lihood estimator for z is the minimizer of the weighted
nonlinear least-squares problem

minimize
u∈CN

1
2

m

∑
i=1

wi[ fi(u)−bi]
2. (SEP)

Starting from an initial guess u0 ∈ CN , solving (SEP)
using the Gauss–Newton method with a polar pa-
rameterization of u yields the classic Schweppe algo-
rithm [8]. Convergence can be guaranteed (under mild



assumptions) by adjusting the Gauss–Newton step sizes
using backtracking line search, or by adopting a trust-
region strategy, as in the Levenberg–Marquardt algo-
rithm; see e.g. [9, Sec.10.3].

1.2. Spurious estimates

Existing software based on the Gauss–Newton
method can produce spurious, nonsensical estimations,
particularly during unusual or emergency conditions
when accurate estimates are needed the most. When
this occurs, the conventional wisdom is to conclude that
the estimation has been unduly biased by “bad data”,
meaning that some of the measurements may have er-
ror variances considerably larger than expected. The
influence of bad data can be reduced by reweighing the
measurements according to their reliability; consider-
able work exists on the problem of iteratively refining
these weights to improve the estimates [10, 11, Sec.7].

However, it is possible to obtain spurious estimates
even in the absence of measurement errors, due to the
nonconvexity of (SEP). The maximum likelihood esti-
mator is defined to be the global minimizer, but only
first-order (and second-order) critical points can be
found in a reasonable amount of time using conven-
tional algorithms, which may not even be local mini-
mizers when the objective is nonconvex. Indeed, several
of Karp’s 21 NP-complete problems can be posed as the
global minimization of (SEP), so we must conclude that
perfect state estimation (without spurious estimates) is
NP-hard in the general case.

1.3. Main results

This paper is motivated by a surprising observation:
using a sufficiently large number of redundant, error-
free measurements, convergence to the global mini-
mizer almost always occurs, even when the initial guess
is not particularly close to the true solution. To offer
a theoretical explanation for this finding, we derive in
Section 3 a lower-bound on the distance between the
true solution and the nearest spurious local minimum
(Theorem 5). The bound is the solution to a quasi-
convex optimization problem, and can be evaluated in
polynomial time using an interior-point method. Using
the bound, we show in Section 4 that critical points of
the nonconvex least squares objective become increas-
ing rare and far-away from the true solution with the ad-
dition of redundant information. Put in another way, re-
dundant measurements make the nonlinear least squares
problem more convex.

1.4. Related work

State estimation can be viewed a special instance of
a rank-constrained semidefinite program (SDP) [12]—a
linear optimization over the positive semidefinite ma-
trix variable X � 0, subject to rankX = 1. The rank
constraint makes the overall problem nonconvex, and it
is standard to “convexify” by replacing it with a con-
vex surrogate. The resulting problem was shown by
Madani et al. [13] and later Zhang et al. [14] to enjoy
a number of global convergence guarantees. The pri-
mary disadvantage of the convex approach is its heavy
computational and memory requirements, though these
can be somewhat reduced using chordal decomposi-
tion [15, 16] and large-scale first-order optimization al-
gorithms like ADMM [17].

Recently, equivalent versions of the nonconvex
problem (SEP) have been studied in the greater context
of rank-constrained SDPs. A line of results developed
for the matrix completion and matrix sensing problems
have found that, given a sufficiently large number of
random measurements (i.e. with matrices M1, . . . ,Mm
random), the objective function in (SEP) admits no spu-
rious local minima [18, 19]. While these previous re-
sults do not directly apply to state estimation (as power
systems are not random), it is interesting to note that
they all arrive at a similar conclusion—the nonconvex
problem (SEP) can be made more convex by introduc-
ing a sufficiently large amount of redundant informa-
tion. In this regard, state estimation is not a special case.

This paper uses “state estimation” to refer to the
static, AC formulation of the problem, while noting that
there also exists a formulation for the so-called “DC
power flow model” [20]. The “DC” model linearizes the
relationship between voltage and power, so the resulting
least squares problem is convex and easy to solve. How-
ever, DC estimation is accurate only within a near-linear
region of the underlying nonlinear model, and any inac-
curacies can be greatly exacerbated in the presence of
bad measurements and / or large modeling errors.

Also, state estimation can be formulated as a dy-
namic problem [21]. By assuming that the voltage pha-
sors are somewhat slowly-varying with time, past infor-
mation can be used to inform future estimations. In real-
ity, voltage phasors can change rapidly, and dynamic es-
timators can be susceptible to spurious estimations dur-
ing transient events, like the tripping of a line or the loss
of a generator.

Notation

Upper-case letters denote matrices and lower-case
letters denote vectors and scalars. Subscripts are used



for element-wise indexing. The superscript “T ” refers
to the transpose, and the superscript “∗” refers to the
Hermitian transpose. We write i =

√
−1 as the imagi-

nary unit. The calligraphic font is reserved for sets.

2. Critical Points in State Estimation

Even in the absence of measurement errors, state
estimation can produce spurious estimations due to the
nonconvexity of the underlying least-squares problem.
In this section, we will review the classical formulation
for the state estimation problem on power systems. We
give explicit examples of critical points for the simplest
two-bus example.

2.1. SCADA measurements as quadratics

In state estimation, the classical SCADA measure-
ments of nodal and branch powers, and voltage magni-
tudes, can all be posed in the quadratic form shown in
(1). Let us illustrate this on an N-bus power system.
Writing the vector of voltage phasors as z ∈ CN and the
j-th column of the size-N identity matrix as e j, the cur-
rent phasor flowing from the i-th bus to the j-th bus is

ci→ j = Yi, j(zi− z j) = [Yi, j(ei− e j)]
T z, (2)

where Yi, j ∈ C is the directional admittance of the cor-
responding line or transformer. The current injection
at the i-th bus is the total current flowing from the node,
which comprises a shunt-current and flows to the neigh-
boring buses N (i), as in

ci =

[
Yiei + ∑

j∈N (i)
Yi, j(ei− e j)

]T

z, (3)

where Yi is the corresponding shunt-admittance. It is
straightforward to see that any voltage magnitude mea-
surement is a quadratic measurement

z∗i zi = z∗(eieT
i )z. (4)

Given that power is the product of voltage and current,
and that the currents are themselves linear to voltage,
the power measurements can also be written as quadrat-
ics with respect to z. For example, the (complex) power
consumed at the i-th bus can be written

pi + iqi = c∗i zi = (z∗Piz)+ i(z∗Qiz), (5)

where Pi =
1
2 (Si +S∗i ) and Qi =

1
2i (Si−S∗i ) are the Her-

mitian splitting for

Si = Y ∗i eieT
i + ∑

j∈N (i)
Y ∗i, j(ei− e j)eT

i .

Similarly, the power “sent” from the i-th bus to the j-th
bus

pi→ j + iqi→ j = c∗i→ jzi = (z∗Pi→ jz)+ i(z∗Qi→ jz), (6)

and the power “received” at the i-th bus due to the j-th
bus

pi← j + iqi← j = c∗j→izi = (z∗Pi← jz)+ i(z∗Qi← jz), (7)

can be written where Pi↔ j =
1
2 (Si↔ j + S∗i↔ j), Qi↔ j =

1
2i (Si↔ j−S∗i↔ j) are the Hermitian splitting for

Si→ j = Y ∗i, j(ei− e j)eT
i , Si← j = Y ∗j,i(e j− ei)eT

i .

The quadratic nature of these measurement functions
makes the least-squares problem (SEP) nonconvex.

2.2. Polar parameterization

It is standard to decompose each complex voltage
phasor candidate into its polar form ui = vieiθi . In the
absence of measurement errors, this rewrites each mea-
surement equation (1) into

fi(u) = pi(v,θ) =

 v1eiθ1

...
vNeiθN


∗

Mi

 v1eiθ1

...
vNeiθN

 ,
and the nonlinear least squares problem (SEP) into an
optimization over real variables

minimize
v∈RN

θ∈0×RN−1

1
2

m

∑
i=1

wi[pi(v,θ)− fi(z)]2. (8)

We force the angle of the first element of u to be zero
in order to remove the redundancy associated with ab-
solute phase. We do this because the measurements re-
main identical fi(u) = fi(eiϕ u) after an absolute phase
shift by ϕ ∈ [0,2π) radians.

Applying the Gauss–Newton method to (8) yields
the original Schweppe algorithm [8]. Adopting a line
search or a trust-region strategy guarantees convergence
to a first-order optimal point (v̂, θ̂) satisfying

m

∑
i=1

wi[pi(v̂, θ̂)− fi(z)]
∂pi(v̂, θ̂)

∂v1
= 0, (9)

m

∑
i=1

wi[pi(v̂, θ̂)− fi(z)]
[

∂pi(v̂, θ̂)/∂v j

∂pi(v̂, θ̂)/∂θ j

]
= 0,

for all j ∈ {2, . . . ,N}.
If the point (v̂, θ̂) matches the true solution z by

satisfying v̂ieiθ̂i = zi, then (9) is trivially satisfied since



the residual pi(v̂, θ̂)− fi(z) = 0 is zero. However, it is
also possible for (v̂, θ̂) to satisfy (9) without setting the
residual to zero. Such a point is a spurious critical point,
because it satisfies first-order optimality without being
globally optimal.

2.3. Example: Two-bus system

Even the simplest power systems with perfect, re-
dundant measurements can suffer from spurious critical
points. To give an illustration, consider a system with
just two buses, connected by a single line with admit-
tance

Y1,2 = Y2,1 =
1

0.01+0.1i
per unit.

Setting bus-1 as the slack bus and loading bus-2 with
a complex power load of 2+ 1i per unit yields the two
voltage phasors

z1 = 1, z2 = 0.806−0.19i.

The vector z = [z1;z2] is the true system state. By con-
struction, it is a global minimizer for any version of
the nonlinear least squares problem (SEP) with error-
free measurements, and always has an objective value
of zero.

To estimate z, let us define v1,v2 ∈ R as the two
voltage magnitude estimates, θ2 ∈ (−π,π] as the esti-
mate for the angle of the second bus (keeping the angle
of the first bus at zero). Consider making the following
four error-free measurements:

f1(z) = z∗1z1,

f2(z) = Re [(Y ∗2,1(z2− z1)
∗z2] = p2,

f3(z) = Im [Y ∗2,1(z2− z1)
∗z2] = q2,

f4(z) = Re [Y ∗1,2(z1− z2)
∗z1] = p1,

defined according to (5)-(7). Using a symbolic algebra
toolbox, we discover the following critical pointsv1

v2
θ2

 ∈

 1

0.829
−13.2◦

 ,
 0.870

0.345
−35.7◦

 ,
 0.846

0.401
−32.0◦

 ,
0

0
0

 ,

that satisfy the condition (9) for the four measurements
specified above. These four critical points have least-
squares objective values of

{0, 0.11183, 0.11299, 10.297}.

The first point is clearly the global minimum, corre-
sponding to the true system state. Sweeping the ob-
jective function as in Figure 1 reveal the second critical
point to be a local minimum, the third to be a saddle
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Figure 1: Contour plots for the two-bus state estimation
nonlinear least-squares objective function.



point, and the last (the zero vector) to be a local maxi-
mum.

To highlight the hazards of spurious local min-
ima, consider estimating v2 and θ2 using nonlinear least
squares, while fixing the slack bus at v1 = 1. The ob-
jective function has contour plot shown in Figure 1a,
and we see two local minima: the true system state
at v2 ≈ 0.8 and θ2 ≈ −10◦, and a spurious estimate at
v2 ≈ 0.2 and θ2 ≈−40◦. A state estimator based on lo-
cal refinement could converge to either estimates if the
initial guess were set sufficiently close. Both local min-
ima have physically meaningful values and small least-
squares residual values. Indeed, they would be virtually
indistinguishable if the measurements were tainted with
error.

In this simple problem, the true system state has a
unique, closed-form solution:

z1 =
√

f1(z),

Imz2 =
f2(z)ImY1,2 + f3(z)ReY1,2

|Y1,2|2z1
,

Rez2 =
f4(z)/z1 + z1ReY1,2 + Imz2ImY1,2

ReY1,2
.

Consequently, our inability to reliably estimate the true
system state should be viewed as a shortcoming of the
solution approach, rather than a reflection of the inher-
ent “hardness” or “ambiguity” of the underlying estima-
tion problem. For this specific example, the semidef-
inite relaxation approach of [14] is guaranteed to pro-
duce the true system state, even in the presence of some
measurement error.

3. Critical Points in Quadratic Recovery

Our main theoretical tool for studying the critical
points of state estimation is a mathematical insight on
the quadratic recovery problem. Briefly, the quadratic
recovery problem seeks to recover a fixed, unknown
z ∈ Rn, by solving a weighted nonlinear least-squares
problem

minimize
x∈Rn

m

∑
i=1

wi(xT Aix−bi)
2 (QRP)

given error-free measurements b1, . . . ,bm ∈ R, where

bi , zT Aiz.

Conventional optimization algorithms based on local
refinement (including the Newton, Gauss–Newton, and
gradient descent algorithms and their variants) are only
guaranteed to converge onto a first-order optimal point

satisfying
m

∑
i=1

wiAix(xT Aix− zT Aiz) = 0, (FOC)

which we will refer to as a critical point. The true so-
lutions x = ±z are obviously critical points, but given
the nonconvexity of (QRP), there will generally exist a
number of other choices of x that also satisfy (FOC).
These correspond to local extrema and infliction points
of the objective function, and we name them spurious
critical points.

Now, consider the matrix-valued function

H(h,w) =
m

∑
i=1

wiAi(z+h)(2z+h)T Ai,

and note that (FOC) is equivalent to a null-space equa-
tion

[H(x− z,w)](x− z) = 0. (10)

We observe that any choice of x 6= z that makes the ma-
trix H(x− z,w) nonsingular cannot be a critical point
satisfying (FOC), because it is not possible for the
equivalent statement (10) to be satisfied. Defining S0
as the set of all such choices of x yields a region within
Rn that excludes all spurious critical points.

Proposition 1 (No spurious critical points). Define

S0 , {x ∈ Rn : H(x− z,w) is invertible}.

Then any x ∈ S0\{z} is not a critical point, i.e. it does
not satisfy (FOC).

The result can be conservative, meaning that S0 is
not always the largest possible set without any spuri-
ous critical points. Nevertheless, our numerical experi-
ence found S0 to be very large, suggesting that Propo-
sition 1 is reasonably nonconservative for our applica-
tions. Indeed, if we assume that the matrices A1, . . . ,Am
are generic (e.g. if all of their entries were selected inde-
pendently from a probability distribution), then S0 fills
the entire space Rn except for an exponential number of
discrete points.

In practice, it is more convenient to work with a
conservative version of Proposition 1.

Corollary 2. Define

S1 := {x ∈ Rn : H(x− z,w)+H(x− z,w)T � 0},

Then any x ∈ S1\{z} is not a critical point, i.e. it does
not satisfy (FOC).

Proof. Any real matrix H is invertible if its symmetric
projection H +HT is positive definite, so we have S1 ⊆
S0, meaning that S1 inherits all of the properties of S0.



3.1. Application to state estimation

State estimation can be viewed a special, complex
case of quadratic recovery, so we may use Proposition 1
and Corollary 2 to study its critical points. To explain,
let us take a rectangular parameterization of each com-
plex voltage phasor ui = xi + iyi in (SEP), and write the
measurement equations (1) in the absence of measure-
ment errors as

fi(u) = ri(x,y) =
[

x
y

]T [ReMi −ImMi
ImMi ReMi

][
x
y

]
. (11)

Then, the nonlinear least squares problem (SEP) is writ-
ten

minimize
x∈RN

y∈0×RN−1

1
2

m

∑
i=1

wi[ri(x,y)− fi(z)]2, (12)

which we immediately recognize as an instance of
(QRP), with n = 2N − 1 decision variables, and data
matrices

Ai =

IN 0
0 0
0 IN−1

[ReMi −ImMi
ImMi ReMi

]IN 0
0 0
0 IN−1

 .
At the same time, the critical points associated with the
rectangular parameterization, which satisfy

m

∑
i=1

wi[ri(x̂, ŷ)− fi(z)]
∂ ri(x̂, ŷ)

∂x1
= 0, (13)

m

∑
i=1

wi[ri(x̂, ŷ)− fi(z)]
[

∂ ri(x̂, ŷ)/∂x j
∂ ri(x̂, ŷ)/∂y j

]
= 0,

for all j∈{2, . . . ,N}, have a one-to-one correspondence
with the critical points associated with the polar param-
eterization.

Theorem 3. Given z ∈R×CN−1, define x,y and v,θ to
satisfy z = x+ iy = veiθ . Then (v,θ) is a critical point
satisfying the polar optimality conditions (9) if and only
if (x,y) is a critical point satisfying the rectangular first-
order optimality conditions (13).

Proof. The proof is a straightforward application of
the chain rule; it is included for completeness in Ap-
pendix A.

Accordingly, we may use Proposition 1 to study the
critical points associated with the rectangular parame-
terization of (SEP). Theorem 3 says that these are one
and the same as the critical points for the conventional,
polar parameterization of (SEP)

3.2. The nearest critical point

One application of Corollary 2 is to lower-bound
the distance between the solution and its closest spuri-
ous critical point. Conceptually, this can be posed as a
robust optimization problem for the radius of the largest
“ball” that fits within S1, as in

ρopt , maximize ρ subject to B(ρ)⊆ S1, (14)

where
B(ρ), {x ∈ Rn : ‖x− z‖` ≤ ρ}.

Given that B(ρ?) contains no spurious critical point
(Corollary 2), ρ? must be a lower-bound for the dis-
tance to the nearest critical point:

‖x− z‖` ≥ ρopt holds for all x 6= z satisfying (FOC).

Problem (14) can be solved by a bisection method
if we have an efficient way of validating the inclusion
B(ρ)⊆ S1. To describe how this is done, we define the
“residual Jacobian” function as

J(x),
[
A1x · · · Amx

]T
,

and note that

H(h,w) = J(z+h)TWJ(2z+h)

=

[
J(z)
J(h)

]T [2W 3W
0 W

][
J(z)
J(h)

]
where W = diag(w). Accordingly, the inclusion B(ρ)⊆
S1 can be written[

J(z)
J(h)

]T [4W 3W
3W 2W

][
J(z)
J(h)

]
� 0

holds for all ‖h‖` ≤ ρ. (15)

Now, let us recall a classic result from control the-
ory [22, Lem.1].

Lemma 4. Given A,B,C,D,G and the uncertainty set
U , define F(∆) = D+C∆(I−A∆)−1B as a linear frac-
tional transform. Then[

G
F(∆)

]T

J
[

G
F(∆)

]
≺ 0 holds for all ∆ ∈ U

if there exists a Hermitian multiplier P satisfying[
I 0
A B

]T

P
[

I 0
A B

]
+

[
0 G
C D

]T

J
[

0 G
C D

]
≺ 0 (16)

while relating to U by[
∆

I

]T

P
[

∆

I

]
� 0 holds for all ∆ ∈ U\{∞},[

I
0

]T

P
[

I
0

]
� 0 holds for ∞ ∈ U . (17)



To give an example application of the lemma, sup-
pose that we chose ‖ · ‖ to refer to the usual infinity
norm. Then we use the singular value decomposition
to obtain an LFR representation

J(h) =
n

∑
j=1

h j
[
A1e j · · · Ame j

]T
=

n

∑
j=1

h jC jB j

=
[
C1 · · · Cn

]︸ ︷︷ ︸
C

h1Iν1
. . .

h1Iν1


︸ ︷︷ ︸

∆(h)

B1
...

Bn


︸ ︷︷ ︸

B

.

The condition ‖h‖∞ ≤ ρ is equivalent to ∆ ∈ U , where

U , {∆(h) : σmax[∆(h)]≤ ρ},

and the standard choice of multipliers P to enforce (17)
is

P =

[
−diag(Q1, . . . ,Qn) diag(S1, . . . ,Sn)
diag(S1, . . . ,Sn)

T ρ2diag(Q1, . . . ,Qn)

]
in which each Q j = QT

j � 0 is positive semidefinite and
each S j = −ST

j is skew symmetric; see [23, Sec.3.4.3].
Applying Lemma 4, a conservative approximation for
B(ρ)⊆S1 is the following linear matrix inequality fea-
sibility problem[

0 J(z)
C 0

]T [4W 3W
3W 2W

][
0 J(z)
C 0

]
+

[
Q −SB

−BT ST −ρ2BT QB

]
� 0, (18)

where

Q = diag(Q1, . . . ,Qn)� 0, (19)

S = diag(S1, . . . ,Sn) = ST . (20)

are multiplier variables.
Let us write B(ρ)⊆S2 to mean that there exist Q,S

to satisfy (18)-(20) for that choice of ρ , and B(ρ)* S2
to mean otherwise. Lemma 4 says that the condition
B(ρ) ⊆ S2 implies B(ρ) ⊆ S1, so we may replace the
latter by the former in (14) to yield a lower-bound on
the infinity-norm distance between the solution and the
closest critical point.

Theorem 5. Define ρopt as the optimal objective for

ρopt , maximize ρ subject to B(ρ)⊆ S2,

Then ‖x− z‖∞ ≥ ρopt holds for any critical point x 6= z
satisfying (FOC).

Since (18)-(20) are just a set of convex linear ma-
trix inequalities, the existence of Q,S can be efficiently
checked using an interior-point method as a convex fea-
sibility problem. Then, a bisection method can be used
to optimize over the precise value of ρ .

Algorithm 1 (Bisection). Inputs: Lower-bound ρ
1
= 0,

Upper-bound ρ1 > 0 satisfying B(ρ1) * S2; Accuracy
ε > 0,

Do: For k = 1,2, . . .

1. Set ρ = (ρ
k
+ρk)/2.

2. If the gap ρk − ρ
k
< ε , then return ρ as an ε-

approximation of ρopt. Otherwise, go to Step 3.

3. Check the condition B(ρ) ⊆ S2. If the condition
holds true, then update the lower-bound ρ

k+1
= ρ

and keep the upper-bound ρk+1 = ρk. Otherwise,
update the upper-bound ρk+1 = ρ and keep the
lower-bound ρ

k+1
= ρ

k
.

4. Go to Step 1.

Remark 6. The initial upper-bound ρ1 can be computed
using an exponential line search, e.g. by incrementing
β until B(2β )* S2 and setting ρ1← 2β .

4. The Effect of Redundant Measurements

Consider adding additional redundant measure-
ments to a given estimation problem. Intuitively, this in-
troduces new information to the problem, so we would
generally expect the “hardness” of the problem to be de-
creased. At the same time, it is certainly possible for the
new measurements to make the nonlinear least-squares
problem (SEP) more nonconvex, thereby increasing the
likelihood for the solution algorithm to get “stuck” at a
local minimum.

Our numerical results in Section 4.1 suggest that
(SEP) generally becomes less nonconvex with redun-
dant measurements. In fact, once a sufficiently large
number of measurements are added, the algorithm stops
converging onto local minima altogether. In Sec-
tion 4.2, we use the bounds derived in Section 3 to show
that spurious critical points become increasing rare and
far-away from the true solution with the addition of re-
dundant information.

4.1. Numerical experiments

Figure 2 illustrates the success rate of quadratic re-
covery for the IEEE 14-bus and 39-bus systems, us-
ing error-free measurements. Each square represents
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Figure 2: State estimation success rate on: (a) 14-bus
system; (b) 39-bus system.

a single experiment over 100 trials (14-bus) or 20 tri-
als (39-bus), and each trial attempts to solve the rect-
angular parameterization of (SEP) using the Leven-
berg–Marquardt algorithm (a trust-region variant of the
Gauss–Newton algorithm), starting from a random ini-
tial guess. The trial is marked a “success” if the residual
Euclidean norm drops below 10−9, corresponding to an
objective function value (and duality gap) of 10−18. The
color of each square represents the success rate of the
corresponding experiment.

The experiments vary column-wise according to
the infinity norm error ‖x0− z‖∞ of the random initial
guess x0, which is fixed per experiment. To do this,
we chose each x0 as follows: (a) select a random direc-
tion h ∈Rn on the n+1 dimensional sphere; (b) rescale
h to the desired infinity norm; (c) output x0 = z + h.
The experiments vary row-wise according to the num-
ber of measurements m considered. The first row of
experiments have a baseline n = 2N−1 measurements
that coincide with the underlying powerflow problem.
In each subsequent row, redundant measurements are
added, one batch at a time, selected uniformly at ran-
dom from the remaining measurements. We repeat this
until reaching the final row, containing all measure-
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Figure 3: The regions (gray & black) S0 and (black) S1
projected onto the first two coordinates of x.
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Figure 4: The bound between the solution and the clos-
est critical point from Theorem 5.



ments defined earlier in Section 2.1.
Let us make a few observations about the results.

First, when the number of measurements are small, the
success rates rapidly drop to zero as the initial point is
pulled further away from the solution. In the special
case of m ≈ n, the success rate is nonzero, even when
the initial point is far from the solution. Upon closer
examination, however, we find that the solution algo-
rithm is not actually converging to the true solution z,
but alternative solutions to the power flow equations.

As more redundant measurements are added, the
success rates generally improve, although this is not
guaranteed. Indeed, in the case of the 39-bus prob-
lem at around m ≈ 1.5n, the success rates actually
worsen once new measurements have been introduced.
Also, some measurements seem to affect the success
rate more than others. In particular, the measurements
added at m/n≈2, 2.5 and 4 for the 14-bus problem and
m/n≈ 1.5, 2, 2.5 for the 39-bus problem appear to have
the most effect.

Finally, with many redundant measurements, the
success rates climb dramatically to 100%. Despite the
apparent nonconvexity, local optimization always con-
verges to the true global optimum. We always recover
the true system state z.

4.2. Comparison with theory

In Section 3, we had defined two regions in Rn, de-
noted S0 (Proposition 1) and S1 (Corollary 2), that are
guaranteed to contain no spurious critical points. Fig-
ure 3 plots a 2-D projection of these two regions for
the IEEE 14-bus system, over the same sets of measure-
ments previously considered above. More specifically,
we generate a grid of test points, each identical to z ex-
cept the first two components, and numerically verify
whether each is contained within S0 and S1. (In the
case of S0, the invertibility of a matrix M is verified
by computing its condition number and checking if it is
< 106).

As redundant measurements are added, the sets S0
and S1 grow to fill a vast portion of the entire space.
Any spurious critical point must lie outside of either
sets, and hence become increasingly rare and far-away
from the solution. To confirm this suspicion, we eval-
uate the lower-bound in Theorem 5, which is itself a
lower-bound on the size of the largest hypercube that
can be contained within S1. The results, plotted in
Figure 4, found the lower-bound to be increasing with
the number of measurements m, with value ranging be-
tween 0.04 and 0.13. This suggests that an initial guess
accurate to around 0.1 p.u. should be enough to allow
Gauss–Newton to recover the true system system state,

in spite of any nonconvexity in the problem.

5. Discussion

Overall, our empirical results indicate that spurious
critical points in state estimation are made less likely
by a diverse array of redundant measurements. Intu-
itively, it is very difficult for a large number of diverse
observations to “conspire together” to point towards a
spurious estimation. This intuition has been made pre-
cise in two special cases of the quadratic recovery prob-
lem—matrix completion and matrix sensing [18, 19].
State estimation, however, is more complicated due to
the presence of structure: the system topology is deter-
ministic, and not all measurements are equally “good”.
Generalizing these prior arguments to the structured
state estimation problem requires revisiting many math-
ematical concepts, and is left as future work.

For the most part, power systems are exhaustively
measured, with a large number of measurements com-
pared to unknowns. The results in Section 4 seem to
suggest that local convergence is not a significant is-
sue for state estimation on real power systems. How-
ever, power system models are imprecise, with model-
ing errors hovering around 3%, and that SCADA mea-
surements are often noisy and spread out over a time
interval. Measurement noise may create spurious criti-
cal points, though existing results for the matrix sensing
problem suggest that these will not lie too far from the
global minimum [19]. Another direction of future work
is to extend our results in Section 4 to the noisy case.

6. Conclusions

State estimation is a nonconvex, nonlinear least
squares problem, that is NP-hard to solve in the gen-
eral case. However, given a sufficiently large number
of redundant, error-free measurements, we observe that
any local search algorithm is able to converge to the true
solution, using an initial guess that is not necessarily
close to the solution. In this paper, we develop a lower-
bound on the distance between the true solution and the
nearest spurious local minimum, and use it to numeri-
cally verify that critical points become increasing rare
and far-away from the true solution with the addition of
redundant information.

A. Proof of Theorem 3

Let us begin by stating a straightforward conse-
quence of the partial differential chain rule.

Lemma 7. Given a continuously differentiable function



of two variables r : R2→R, we define the polar param-
eterization x(v,θ) = vcosθ and y(v,θ) = vsinθ , and
define

p(v,θ) = r(x(v,θ),y(v,θ)).

Then the partial derivatives satisfy[
∂p/∂v
∂p/∂θ

]
=

[
cosθ sinθ

−vsinθ vcosθ

]
︸ ︷︷ ︸

U(v,θ)

[
∂ r/∂x
∂ r/∂y

]
(21)

Proof of Theorem 3. Applying (21) to (13) with j ∈
{2, . . . ,N} reveals

m

∑
i=1

wi[pi(v,θ)− fi(z)]
[

∂pi(v,θ)/∂v j
∂pi(v,θ)/∂θ j

]
=

U(v j,θ j)
m

∑
i=1

wi[ri(x,y)− fi(z)]
[

∂ ri(x,y)/∂x j
∂ ri(x,y)/∂y j

]
. (22)

In the case that v j 6= 0, the matrix U(v j,θ j) is invert-
ible, so the j-th instance of (13) is satisfied if and only
if the corresponding instance of (9) is also satisfied. On
the other hand, v j = 0 occurs if and only if x j = y j = 0,
and both j-th instances of (13) and (9) are zero because
∂ ri(0,0)/∂x j = ∂ ri(0,0)/∂y j = 0 holds for every i. Re-
peating these arguments for each j proves the desired
statement.
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